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Abstract

This paper studies how social media affects the dynamics of protests and strikes in

China during 2009-2017. Based on 13.2 billion microblog posts, we use tweets and retweets

to measure social media communication across cities and exploit its rapid expansion for

identification. We find that, despite strict government censorship, Chinese social media

has a sizeable effect on the geographical spread of protests and strikes. Furthermore, social

media communication considerably expands the scope of protests by spreading events

across different causes (e.g., from anti-corruption protests to environmental protests) and

dramatically increases the probability of far-reaching protest waves with simultaneous

events occurring in many cities. These effects arise even though Chinese social media

barely circulates content that explicitly helps organize protests.
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1 Introduction

Recent studies show that communication through social media is powerful in organizing grass-

roots protests (Tucker et al. 2016; Steinert-Threlkeld 2017; Acemoglu et al. 2018; Enikolopov

et al. 2020; Fergusson and Molina 2020). However, it remains an open question whether this

extends to a more strictly controlled media environment. Answering this question is impor-

tant, as an increasing number of governments are tightening their control over social media

to suppress protests (Howard 2011; Woolley and Howard 2019).

In this paper, we study whether and how social media affects protests and strikes in China,

the world’s largest nondemocratic country, which is known for its extensive media censorship.

In China, protests of limited scale and scope are allowed (e.g., Cai 2008; Lorenzten 2017),

but the regime is highly cautious of protests that may snowball into large social movements

targeting national problems and challenging the ruling party.1

A key innovation of our study is the focus on the impact of social media on the dynamics

of protests and strikes; that is, how information diffusion via social media helps spread

events from one city to another, potentially leading them to evolve into substantial protest

waves. Grasping how events spread is essential to understanding the emergence of nation-

wide protest waves, and, in particular, understanding the probability of the occurrence of

very large waves of simultaneous events across many cities. To estimate the causal effect of

social media on event dynamics, we use the rapid expansion of the information network across

cities (prefectures) based on large-scale textual data from Sina Weibo (Weibo for short)– the

leading microblogging platform in China.

The first empirical question is whether information about protests and strikes circulates

on Weibo. Based on the same database used in Qin et al. (2017), we identify around 4 million

microblog tweets mentioning protests or strikes during 2009-2013. These tweets appear in

bursts around real-world protests and strikes. A large proportion of them discuss the causes of

the events, such as corruption or wage arrears, and criticize the government for poor policies

and misbehavior. Many of the most retweeted posts express anger towards the government

and sympathy for the protesters. This type of information is largely absent from traditional

Chinese media. In fact, before the advent of social media, no other sources inform large

audiences of protests and strikes in China.

To measure how information diffuses on Weibo, we take advantage of our unique data

on retweets (forwards). We use retweets on topics other than protests and strikes from one

city to another within the past few months to measure information diffusion between cities.

1A cautionary example is Solidarity in Poland, which originated from limited demands for workers’rights
and better economic conditions but quickly turned into pervasive resistance that proved fatal to the regime.
More recent examples involve social media. In 2013, small groups of environmentalists protested the proposed
destruction of Gezi Park in Istanbul; the protest exploded to attract millions of tweets on social media and
eventually the participation of hundreds of thousands of people in Turkey. In 2013-2014, after the Ukrainian
president Viktor Yanukovych failed to sign an agreement with the EU, opposition leaders posted calls for
protests on Twitter and Facebook. The protests then grew rapidly and spread widely, eventually culminating
in the ouster of Yanukovych.
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The fact that a user retweets a message indicates that the user has seen it. Thus, retweets

are an effective measure of information diffusion (e.g., Kwak et al. 2010). In a subset of 3

million initial retweets for which we have precise timing and location information, we find

that approximately 28% of the retweets occur within one hour of the posting of the original

messages, and 75% within one day. After one hour, geographical distance plays no role in

explaining who retweets a tweet. In a country as vast and geographically dispersed as China,

Weibo provides an unprecedented information network that connects distant individuals and

instantly informs a substantial share of the Chinese population of sensitive events.

We examine how this rapidly expanding social media network affects the spread of protests

and strikes in a panel of Chinese cities during 2006-2017. Estimating the causal effect of social

media on the dynamics of real-world events is challenging. First, cities with strong social

media ties typically have strong ties through other information channels, such as phone calls

and face-to-face meetings. Second, cities with strong social media ties tend to share similar

characteristics (e.g., industry structure) and hence are likely to be exposed to similar shocks

that affect the propensity to protest and strike. These two issues correspond to what Manski

(1993) calls contextual and correlated effects, which are endemic to network analysis.2 In

addition, a reflection or simultaneity problem appears if simultaneous events are observed in

several cities, and these events affect each other at the same time.

We address these problems using the time-series dimension in our panel data. First,

we measure the correlated and contextual effects in the pre-Weibo period (when the Weibo

network did not exist) and partial them out when estimating the effect of the social media

network in the post-Weibo period. Second, our panel structure helps mitigate the simultaneity

problem. In a cross-sectional network setting, all events are simultaneous, which makes the

reflection problem more acute. In a panel network setting, some events are pre-determined

and cannot be affected by later events. We use high-frequency daily data with accurate

information on which events come first.

The main findings of our empirical analysis are as follows. First, information diffusion

on Weibo creates a strong ripple effect that rapidly spreads protests and strikes across cities.

We estimate that, because of Weibo, the occurrence of a protest in one city increases the

probability of a protest taking place within two days in any of the other cities by 17%.

Relative to the mean event probability, the estimated effect amounts to a 34% increase for

protests and a 21% increase for strikes. These results are robust to the use of student mobility

across cities as an instrumental variable (IV) for social media connections and are immune

to the consideration that social media may increase event observability.

Second, information on Weibo increases the scope of protests and strikes. Not surprisingly,

we find that the spread of events is predominantly narrow in scope, in the sense that protests

spread to other protests concerning the same cause and strikes spread to other strikes in

2Proposed solutions include exploiting the network structure to identify instruments (e.g., Bramoulle et al.
2009), using instruments that are uncorrelated with the error terms and the network (e.g., Acemoglu et al.
2015; Konig et al. 2017), matching (Aral et al. 2009), and explicit randomization (e.g., Bakshy et al. 2012).
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the same industry. However, Weibo also induces a significant, albeit smaller, effect on event

spread across categories. Although the spreading effect per event is smaller, the aggregate

effect of such cross-category spread is greater than within-category spread because the number

of events across all of the categories is much larger than within the same category. This

finding suggests that Chinese social media helps connect protesters with different goals, which

facilitates the formation of substantial protest waves.

Third, Weibo escalates the probability of very large protest waves. We measure the

size of a protest wave by the number of cities experiencing protests within the same week.

Immediately before the introduction of Weibo in 2009, the largest wave of protests affects

cities comprising approximately 4% of China’s population. This corresponds roughly to the

population share of the two largest Chinese cities combined. We estimate that without Weibo,

the share of the affected population would have increased to 6% by 2013, whereas with Weibo,

it would rise to nearly 15%, only slightly below the share in reality. This large effect is driven

by the strong information connections that social media creates between China’s large and

distant cities. In addition, by amplifying the feedback from one event to another, social media

increases not only the mean but also the variance of the wave size and hence the likelihood

of extreme event waves. We estimate that, in 2013, there is a 5% probability of event waves

affecting cities containing 22% or more of China’s population.

Finally, we find that purging social media of content that explicitly helps organize events

does not mute its effect on collective action. By far the most direct explanation (and the

one most emphasized in the literature) for social media’s influence on protests is that it

provides a platform for disseminating logistics information (e.g., where and when to meet)

and organizing events. For instance, Enikolopov et al. (2020) report that two thirds of the

Russian cities in their sample have social media communities created to organize protest

demonstrations. Similar content is found in studies of protests during the Arab Spring and

in Turkey and Ukraine (Tucker et al. 2016; Steinert-Threlkeld 2017). However, because of

strict government censorship, this type of content is scarce on Chinese social media. Instead,

most Weibo tweets about protests and strikes report what causes the event, coupled with

emotional reactions.

This type of content can spread events for several reasons. For example, information

about an event may indicate the opening of a "window of opportunity" in which protests

and strikes are allowed without substantial political risks (Zhou 1993; Weiss 2013; Truex

2019). Such a window may also open if simultaneous protests across several cities increases

the likelihood of obtaining concessions or reduces the risk of punishment (e.g., Granovetter

1978; Edmond 2013; Little 2016; Barberà and Jackson 2020). Another explanation is that

protesters are motivated purely by emotions (e.g., Jasper 2008; Passarelli and Tabellini 2017),

which rapidly spread across regions through social media (e.g., Kramer et al., 2014).

Overall, our findings demonstrate that although social media coverage of protests and

strikes provides useful information for government surveillance (Qin et al. 2017), it also
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spreads protests and strikes across cities and escalates isolated events into far-reaching waves.

Strategic censorship that deletes content useful for organizing protests while retaining infor-

mation that helps identify social problems and gauge public sentiment cannot prevent protests

and strikes from spreading. This points to a fundamental trade-off in autocracies between

eliciting information from the bottom up and containing anti-government collection action.

This paper contributes to the emerging literature on how information and communication

technology affects collective action and regime changes in nondemocratic countries. A number

of papers examine the political effects of the expansion of communication infrastructure,

notably high-speed Internet or mobile phone networks (e.g. Christensen and Garfias 2018;

Manacorda and Tesei 2020; Guriev et al. 2021). A few studies aim to identify the causal

effects of social media on protests (Zhuravskaya et al. 2020). In particular, Enikolopov et

al. (2020) show that penetration of the dominant Russian online social network leads to

protests against election fraud in Russia. Fergusson and Molina (2020) find that Facebook

has a positive effect on collective action on a global scale. Together with other research (e.g.,

Tucker et al. 2016; Steinert-Threlkeld 2017; Acemoglu et al. 2018), these studies highlight

the role of social media in organizing events, as they find extensive social media content

containing information on where and when to meet and how to act.

Our paper advances this literature in several ways. First, we study how social media affects

political collective action in China, which is a considerably more strictly controlled environ-

ment than those previously studied. Second, we focus on the dynamic interaction between

geographically dispersed protests. This dynamic interaction is key to understanding whether

local protests turn into widespread social movements that have important consequences for

an authoritarian regime, as emphasized in the theoretical literature on nondemocratic poli-

tics.3 Finally, our examination of various mechanisms furthers the understanding of the role

of social media in collective action (e.g., Cantoni et al. 2019; Bursztyn et al. 2020).

Our paper also relates to the theoretical literature on protests, government policy, and

regime change (e.g., Lohmann 1993; Battaglini 2017), and in particular Barberà and Jackson

(2020) who argue that social media helps coordinate uprisings. Our findings suggest that

accounting for endogenous censorship of social media, where the regime trades off the benefits

and costs of information control (e.g., Egorov et al. 2009; Lorentzen 2014), would be an

valuable extension of these models.

Finally, our paper contributes to the literature on media control strategies in nondemo-

cratic countries. Several studies take the revealed-preference approach and infer authoritarian

governments’goals from their observed strategy of social media censorship (e.g., King et al.

2013, 2014; Qin et al. 2017). We extend this line of research by examining the effect of

3 In their survey of the theory of nondemocratic politics, Gelbach et al (2016) note: "A number of models
examine the dynamics of collective action in anti-regime protests and the means by which dictators can
prevent their success. An important intuition in the study of protest and revolutions concerns cascades: the
possibility that a protest today spurs more protests tomorrow by revealing information about the degree of
popular support for the regime."
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social media on real-world events after the imposition of censorship, from which we infer that

there is an unavoidable trade-off between the regime’s dual goals of collecting information

and suppressing dissent.

The remainder of this paper proceeds as follows. Section 2 describes the institutional

background. Section 3 describes the data and provides descriptive statistics. Section 4 ex-

plains the empirical specification. Section 5 presents the main results, and Section 6 discusses

their implications. Section 7 discusses censorship and mechanisms. Section 8 concludes. De-

tails about econometric formulation, the Monte Carlo simulations used to assess potential

biases, and investigation of censorship are relegated to three online appendices.

2 Background

2.1 Social Media in China

Social media in China today is as vibrant and extensive as in any Western country. Our study

focuses on the early period of rapid social media expansion in China during 2009-2013. Be-

cause the Chinese government blocked Twitter and Facebook and strictly controlled domestic

microblogging services, the use of social media was limited until Sina Weibo appeared in Au-

gust 2009. A hybrid of Twitter and Facebook, Weibo allows users to tweet and retweet short

messages with embedded pictures or videos, send private messages, and write comments.

Between 2009 and 2012, Weibo use increased exponentially. By 2010, Weibo had 50 million

registered users, and this number doubled in 2011, reaching a peak of over 500 million at the

end of 2012 (China Internet Network Information Center 2014). Weibo adoption was faster

in some areas, notably, those with high pre-existing levels of mobile phone use. During our

main sample period, Weibo was the dominant microblogging platform in China. Since then,

it has lost ground to WeChat, a cellphone-based social networking service, but it remains an

influential platform for public communication.

The popularity of social media in China is coupled with extreme government control.

Early in our sample period, China was ranked by Freedom House as among the countries with

exceptionally low internet freedom, surpassed only by Iran, Myanmar, and Cuba. After 2013,

media control was further tightened, and since 2015, China has been ranked as possessing

the lowest internet freedom in the world.4 Although censorship is pervasive, it is far from

complete even on very sensitive topics such as protests and strikes, likely because of the

Chinese government’s intention to gather information from social media (Qin et al. 2017).

We discuss censorship in detail in Section 7.

4https://freedomhouse.org/report/freedom-net
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2.2 Protests and Strikes

Although a lack of opportunities to protest is a hallmark of authoritarian regimes, there have

been numerous instances of collective resistance in China in the last two decades. The Chi-

nese government’s response to protests is multifaceted. Protests are often met with violent

repression, and their leaders are taken into custody (Lorentzen 2017). Even if some protest

demands are accommodated, organizers and active participants risk losing their jobs and be-

ing arrested or placed under close watch. At the same time, concessions are frequent; protests

viewed as suffi ciently innocuous are even ignored (Su and He 2010; Lee and Zhang 2013). As

numerous public statements by top Chinese Communist Party (CCP) leaders make clear, the

Chinese central government requires local offi cials to handle collective action events strategi-

cally rather than simply suppressing all such events with police force (Steinhardt 2017). For

instance, in many anti-corruption protests, high-ranking CCP offi cials were eventually sent

to converse with protesters to re-establish the public’s trust in the government.

In China, strikes are often triggered by firms’ violations of labor laws, such as wage

arrears and illegal work conditions. Due to weak law enforcement and inadequate government

intervention, strikes are often the most effective way for workers to claim their rights and

express their disapproval. In this sense, strikes are similar to protests, and it is not surprising

that many strikes are associated with protest activities. Government reactions to strikes

range from repressive acts (e.g., police arrests) to mediation to concessions. The Chinese

government does not regard strikes as politically sensitive unless they escalate into violent

events that lead to social unrest.

There are several reasons for the Chinese regime’s relative tolerance of protests and strikes.

First, China is large and diverse, and most political and policy decisions are decentralized to

local governments. Protests are a costly and hence credible way for citizens to communicate

their concerns, which may help the regime identify and correct policy oversights, gauge public

sentiment, and monitor local offi cials (Lorentzen, 2017). Second, the absolute suppression of

collective action may generate distrust and undermine the legitimacy of the regime. Finally,

some collective actions such as strikes may improve welfare and even enhance productivity if

they result in better working conditions (O’Brien and Li 2006; Cai 2010).

As long as protests remain within a restricted scope and location, they pose little threat

to the regime. The regime is only threatened when local protests evolve into larger political

action and social movements that shift the focus from local to national policies and leaders,

thereby diminishing the legitimacy of the regime and trust in the CCP (Cai 2008).

3 Data

We assemble a unique dataset combining detailed information on thousands of collective

action events from 2006 to 2017 together with posts published on Sina Weibo from 2009 to

2013. Data on protests and strikes in China are not available from any offi cial sources, and
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media coverage of such events in mainland China is rather limited. Hence, we collect data

from sources outside mainland China. Below, we explain how we collect the data and provide

a description of our dataset.

3.1 Protests

The data on protests are collected from the website of Radio Free Asia (RFA), a private

nonprofit broadcasting corporation based in Washington DC. We obtain relevant informa-

tion from the Chinese version of the website, which is widely used by Chinese news portals

outside mainland China. The news reported on the RFA website comes from RFA’s cor-

respondents, from media outlets in mainland China, Hong Kong, and Taiwan, and from

Western media outlets, such as the New York Times and BBC. One advantage of using RFA

as the information source is that it hires correspondents on the ground to verify the authen-

ticity of information. To the best of our knowledge, the RFA website is the most reliable and

well-structured data source for protest events in mainland China.5 We searched for keywords

related to “protest”and “demonstration”(in Chinese) on the RFA website and downloaded

the relevant news reports. Several research assistants were hired to verify the news source

and purge duplicate information. Next, they extracted relevant information from each report

and coded the date, location, cause, and size (number of participants) of each event.

The resulting dataset contains 1,172 protests between July 2006 and December 2013,

which is the focal period of our main analysis, and 1,603 protests between 2014 and 2017.

We plot these protests by size and cause in Figure 1. More than four out of every five protests

in our sample concern the government (government policy or corruption, police and courts,

and housing and land reforms) or livelihood issues (employment, environment, and health).

Although many of the events are small and confined to certain localities, some of them are

large-scale and widespread. For instance, an event widely reported by Western media is the

2011 Wukan protest, when thousands of villagers in a village in Guangdong protested against

the corruption of local offi cials. The event led to direct confrontation between the villagers

and local offi cials, violent conflicts between protesters and police, and demonstrations in

multiple cities in support of the villagers.

These protests span 290 cities, accounting for 85% of all cities in China. Figure A1 plots

the number of protests across cities. Around one-fifth of all locations experience more than

10 events during our sample period, with Beijing being an outlier (234 protests).

5One potential data source of protests is the GDELT project, which contains information on massive events
collected from the world’s news media. However, we find the data related to China extremely noisy. Another
data source of protests is the Mass Incident Dataset constructed by the Chinese Academy of Social Sciences
(e.g., Miao et al. 2021). But this dataset relies on media outlets in mainland China and covers only events with
more than 100 participants. Recently, some researchers have applied machine-learning methods to Chinese
social media data to collect collective action events (e.g., Zhang and Pan 2019). However, these data lack
event specifics and are diffi cult to verify. Moreover, this method is likely to overestimate the number of events
due to repeated counting of the same event that was discussed by users in different locations.

8



3.2 Strikes

We collect data on strikes mostly from the China Labor Bulletin (CLB), a non-governmental

organization based in Hong Kong that supports the development of trade unions in China.

The CLB has collected data on strikes in mainland China since 2007. From 2011 onward, this

dataset is electronically available and contains detailed information on the timing, location,

employers involved, industry, scale, worker action, and government responses for each event.

For earlier strikes, we extract similar information from the annual reports published by CLB

and supplement them with data from Boxun, a US-based political news website in Chinese.

The CLB draws on information from overseas Chinese media outlets, labor movement

activists in China, and internet searches including social media. An important source for the

2013-2016 period is Wickedonna, a mass event tracking blog that searched Weibo and other

Chinese social media platforms.

Our dataset contains 1,558 strikes during 2007-2013 and 7,967 strikes during 2014-2017.

As shown in Figure 1, strikes occur in a wide range of economic sectors, with a concentration

in the manufacturing and transportation industries until 2013 and then a shift away from

transportation and towards the construction industry. The most common cause of strikes is

demands for payment of wage arrears. Geographically, these strikes cover 324 cities, approx-

imately 95% of all cities in China. The developed coastal areas are over-represented, notably

Guangdong, Jiangsu and Shandong, but a significant number of strikes occur in some inland

areas. See Figure A1 for the distribution of strikes across cities.

3.3 Social Media

Our social media data come from a database including 13.2 billion Weibo posts published

from 2009 to 2013. The database was created by Weibook Corp, which conducted a massive

data collection project of downloading blogposts from more than 200 million active users.

They categorized users into six tiers based on the number of followers. They downloaded

the microblogs of the top tier users at least daily, the second and third tiers every 2—3 days,

and the lowest tier on a weekly basis. For each post, the data provide the content, posting

time, and (self-reported) user location. According to our estimates, the Weibook dataset

contains approximately 95% of the total posts published on Weibo before 2012 when we have

an alternative measure of the total post volume (Qin et al. 2017).

From the Weibook database, we obtain two datasets. The first one contains the aggregate

information on the number of posts per city and month, based on the entire 13.2 billion posts

available. We use this aggregate measure, labelled as Weibo penetration, to capture how the

popularity of Weibo changes over time and across cities.

The second dataset contains posts that mention any of approximately 5,000 keywords

related to various social and political topics.6 This dataset comprises 202 million original

6Details on our selection of keywords and extraction of posts can be found in Qin et al. (2017).
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posts and 133 million first retweets of them. We only have the direct retweets of the original

posts, not the retweets of the initial retweets. For each original post and initial retweet,

we obtain the text and information on the posting time, number of retweets, and author

location. We use this dataset to construct a network of social media information flows across

cities and measure its expansion over time. We also use posts referencing protests and strikes

to examine how information about protests and strikes diffuses on social media.

Figure 2 depicts the total numbers of protests and strikes per month along with Weibo use

per month. Clearly, there is a positive correlation between the incidence of protests/strikes

and Weibo penetration over time. The number of strikes per month is approximately six in

the 2007-2010 period and it increases sharply to over 52 in 2013. The pattern for protests

is similar, with around three protests per month until 2010, followed by a rapid increase to

around 54 in 2013. The green triangles indicate the number of Weibo posts per capita, which

increases significantly after the start of 2010. This trend of increasing protests and strikes

has not gone unnoticed. It is commented on in numerous news sources including the BBC,

CNN, The New York Times, and The Washington Post.7 Of course, the positive relationship

between social media and events may not be causal. The increase in strikes could be driven

by other factors, such as a slowdown in Chinese exports (Campante et al. 2019) and by

increased observability of the events through social media.

3.4 Information Diffusion

Tweeting on protests and strikes As described in Qin et al. (2017), there is extensive
coverage of protests and strikes on Weibo. From the dataset of original posts, we find 2.5 mil-

lion posts containing keywords related to protests and 1.3 million posts containing keywords

related to strikes. To characterize these posts, we inspect the content of a random sample of

1,000 posts in each category. Around 30% of the posts are indeed about protests and strikes.

These tweets appear in bursts in the cities where strikes and protests take place, starting

from the day before the event, peaking at the day of the event, and remaining high the

following several days. For example, the average number of posts in a city mentioning protests

increases from 4.4 on an average day to 62.6 on days of protests in this city, while the number

of strike tweets jumps from an average of 2.5 per day to 167.3 on strike days (Qin et al. 2017).

Retweets and information diffusion We find that the tweets mentioning protests
and strikes indeed reach many other users. As mentioned before, retweets are an effective

measure of information diffusion (e.g., Kwak et al. 2010). Our tweet data contains a variable

measuring the total number of times each tweet is retweeted. According to this variable, the

3.8 million protest and strike posts generate 37 million retweets, amounting to an average

of 10 retweets per original post. Conditional on being retweeted at least once, there are on

7"Can China keep its workers happy as strikes and protests rise?," Mukul Devichand, BBC, December
15, 2011; "China on strike," James Griffi ths, CNN, March 30, 2016; "Strikes by Taxi Drivers Spread Across
China," Andrew Jacobs, NYT, January 14, 2015; "Strikes and workers protests multiply in China, testing
party authority," Simon Denyer, Washington Post, February 25, 2016.
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average 50 retweets per strike post and 100 retweets per protest post.

To investigate how information in these tweets diffuses, we exploit the 3 million direct

retweets of the protest and strike posts for which we have information on the time of the

retweet and the user’s location; see Figure A2. As shown in the left panel, for posts about

protests and strikes, approximately 28% of the retweets occur within one hour of publication

of the original posts, and 75% within one day. The right panel shows that retweets within

the first hour are more likely to be geographically close. After that, distance plays no role:

the average distance between the user who posts the original post and the user who retweets

it is the same as the average distance between Weibo users. In general, information about

protests and strikes on social media disperses rapidly and widely across China.

Documenting the rapid and wide spread of protest and strike information is important

in its own right. Even if protests and strikes are only local, the accumulation of widespread

information about them could be detrimental to the legitimacy of the regime. Nevertheless,

posting and retweeting of such information is permitted.

Social media information network We use retweets across all topics, except protests
and strikes, to construct a time-varying social media information network, through which

information flows across cities. We use the number of posts from users in city i that are

retweeted by users in city j as a proxy for the flow of information from city i to city j through

the Weibo network. A post from city i being retweeted in city j implies that someone in

city j has seen it and decided to retweet it. Of course, many others in city j may see the

post without retweeting it. Therefore, our retweeting measure is a conservative measure of

information spread.8 In summary, the information network is built on the 133 million first

retweets across all topics excluding the 3 million retweets of the protest or strike posts.

3.5 An Example

In Guangzhou, Guangdong, a male worker wearing a bomb vest staged a protest against

wage arrears in a company in the afternoon of January 18, 2013. Later, he detonated the

bomb, killing one person and severely injuring seven people including himself. Immediately

after the tragedy, many Weibo posts, including some from direct witnesses, described and

commented on the event. We identify 374 posts mentioning our protest-related keywords on

that day from Guangzhou, 261 of them indeed talking about this event. These posts were

first retweeted by Weibo users in nine cities closely connected to Guangzhou according to our

retweet-based measure.9 Most retweets express sympathy for the worker, condemn employers

who default on wages, and decry the local government for disregarding citizens’rights and

8A less conservative measure is to use followers because many followers will not read each blog post. A
widely cited study on Twitter (Kwak et al. 2010) probes whether the number of followers or the number of
retweets is a better measure of influence and settles on retweets.

9Controlling for city and time fixed effects, the ranking percentile of the retweets between these cities and
Guangzhou are 1.19% (Shanwei), 2.3% (Shenzhen), 4.36% (Wuhan), 5.03% (Shanghai), 5.3% (Hangzhou),
5.77% (Chengdu), 6.25% (Xi’an), 6.98% (Zhengzhou), and 8.62% (Qingdao).
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condoning wage arrears.

Among the nine cities that first retweeted posts about the event, three experienced

protests in the subsequent two days. In Shanghai, thousands of workers from a Sino-Japan

joint venture protested the unfair new labor rules, detaining 18 senior managers, and the

situation lasted until policemen stormed the factory two days later. In Shenzhen, hundreds

of people took to the street, protesting the construction of a heavily polluting LCD fac-

tory in their neighborhood. In Shanwei, thousands of villagers protested in front of the city

government, demanding the return of lands taken by the government without appropriate

compensation. These protests occurred at the same time in different provinces. Although

targeting different causes, they all involved people who had suffered enough and protested

against perceived injustices. It is possible that the later protests were inspired by the earlier

ones, but there is no direct evidence of explicit organization or coordination across events.

Our empirical task is to investigate whether such episodes are isolated random incidents

or part of a large-scale systematic pattern. Specifically, do strikes and protests spread more

after the expansion of Weibo use and across cities that are closely connected through Weibo?

4 Specification

We analyze whether information diffusion on Sina Weibo affects the spread of protests and

strikes across Chinese cities using a panel of N cities at daily frequency, t. Because the

specification is the same for both types of events, we use protests for illustration. Let yit be

a dummy variable indicating the occurrence of a protest. Suppose that the probability of a

protest in city i on day t, Pr(yit), depends on the number of people who are informed about

protests yjt−1 in another city j at time t− 1. Let fijt be the number of people in city i who
typically read tweets posted by users in city j. On days when there is no protest in city j,

there is nothing to learn. Thus, the number of people in city i who learn about protests in

city j can be represented by fijtyjt−1. Under the assumption of linearly additive effects, the

reading of protest tweets (and hence the potential spread of events to city i) is increasing in∑
i 6=j

fijtyjt−1.

This is a model of event spread through the social media network, as measured by fijt.

We use two measures of social media connections between city pairs: one time-varying

and the other time-constant. The time-varying measure, fijt, is the logarithm of 1 plus the

number of retweets by users in city i of posts from users in city j on all subjects except

protests and strikes in the prior six months up to one week before day t.10 We normalize

10Using cumulative retweets in a 4-month window produces qualitatively similar results. Although we
have millions of retweets, some averaging over time is necessary because we estimate over 90,000 city-pair
connections. A longer time window increases accuracy but reduces the time variation in connectedness across
cities.
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the fijt matrix so that the average sum of all elements in a row of a weighting matrix is one.

Then, we define

sit−1 =
∑
i 6=j

fijtyjt−1

to capture the time-varying diffusion of information on protests through social media.

The time-invariant measure, fij , captures the average social media connectedness (fijt)

between cities i and j in the post-Weibo period. Then, our measure of protest diffusion

through social media is:

sit−1 =
∑
i 6=j

fijyjt−1.

The fij matrix is normalized so that a marginal change in sit−1 is associated with a marginal

change in sit−1 of the same size. Therefore, the estimated coeffi cients of the above two

measures are comparable with each other.

As we later show, these two measures exploit different variations that lead to two comple-

mentary econometric models. The benefit of the time-varying measure is that it provides an

accurate measure of the actual social media connections between cities at each point in time.

Thus, it uses the exact timing of the expanding social media network to identify effects.

In contrast, the time-invariant measure allows us to better spell out the identification as-

sumptions and investigate the spread due to the pre-Weibo correlated and contextual effects

between cities that eventually become connected in the post-Weibo period. An additional

advantage is that we can examine the effect of social media after 2013, when Weibo data

are not available but a large number of events are added to our data, under the reasonable

assumption that the average number of retweets between cities during 2009-2013 is a good

proxy for the average number of retweets during 2014-2017.11

4.1 Time-Varying Measure of Connections

When using the time-varying measure of social media connections, fijt, we estimate the model

yit = αyit−1 + βsit−1 + γdit−1 + θ0wit + θ
′xit + δi + δt + εit, (1)

where yit is a binary event dummy and sit−1 is defined as above with yjt−1 being the number

of events in city j within two days before t. The variable dit−1 captures the spread to

geographically close cites and is defined as

dit−1 =
∑
i 6=j

dijyjt−1,

11Weibo passed its rapid expansion phase in 2012 and stabilized in 2013. We show that a regression of the
number of retweets between cities during the past six months before the last day of 2013 on the same variable
before the last day of 2011 yields an R2 of 0.96.
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where dij is the inverse of the geographic distance between cities i and j. We include Weibo

penetration, wit, because social media may directly affect the incidence of protests. Prac-

tically, wit is the logarithm of 1 plus the number of Weibo posts, excluding protests- and

strike-related posts, per capita based on the aforementioned 13.2 billion posts in the Wei-

book dataset. Note that wit is measured by the total number of Weibo posts, most of which

concern nonsensitive personal communication, and thus this number is only marginally af-

fected by posting on protests and strikes or by censorship. We add another set of controls,

xit, including the total number of retweets by users in city i (
∑
i 6=j

fijt), the logarithm of pop-

ulation, GDP, the shares of the industrial and tertiary sectors, and the number of cell-phone

users.12 We also include an auto-regressive term yit−1 as well as time and city fixed effects,

δt and δi, respectively. We estimate this model for the period up to the end of 2013, during

which the measure fijt is available. In a robustness specification, we allow for an arbitrary

time-invariant heterogeneity cij in event spread across city pairs by adding the following set

of interaction terms ∑
i 6=j

cijyjt−1.

These variables control for any time-invariant spurious correlations between yit and yjt−1
(e.g., due to correlated or contextual effects). However, adding a large set of N (N − 1)
controls in a very demanding specification may remove some useful information.

4.2 Time-Constant Connections

When using our time-constant measure of connections, we divide the data into three periods:

period 0 is the pre-Weibo years (2006-2009); period 1 is the first post-Weibo period (2010-

2013) for which we haveWeibo data, and period 2 is the second post-Weibo period (2014-2017)

for which we do not have Weibo data. We estimate the following model

yit = αpyit−1 + β
psit−1 + γ

pdit−1 + θ0wit + θ
′xit + δip + δt + εit, (2)

where the variables are defined as above. What is new is that we allow coeffi cients on yit−1,

sit−1, dit−1, and the intercept to differ across the three periods, as indicated by the superscript

p. As shown in Appendix A.1, the above equation can be derived as a generalization of a

fully saturated triple-difference estimator, in which the treatment is (lagged) event shocks in

informationally connected cities in the post-Weibo period.

Now, we discuss the identification assumptions; see Appendix A.1 for more details. Let

yt−1 = (y1t−1, y2t−1, ..., yNt−1) be the N × 1 vector of lagged y’s. We define F and D to be

N ×N matrices with elements fij and dij , respectively. We assume that

E [εit | yt−1, D, F, δip, δt, wit, xit] = 0. (3)

12These data on city-level characteristics are obtained from the Chinese City Statistics Yearbooks.
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Hence, the F matrix of social media connections is assumed to be conditionally exogenous,

after conditioning on the other included variables, notably, the city-by-period fixed effects.

This specification allows for the probability of a protest in city i to be higher in more connected

cities in the pre-Weibo period (δi0) and differentially so in the post-Weibo period (δi1).

By including these terms, we allow the network to be endogenous to the average protest

probability in city i in each period. For example, cities that are more central in the network

can be more prone to protests.

Note that spurious correlations may be caused by unobserved shocks that are correlated

with the network and that arise from endogenous sorting or a common environment. This is

the problem of correlated effects. The correlations may also be driven by the characteristics

of connected cities, which is the problem of contextual effects. To address these issues, we

allow protests in city i to be more likely after a protest occurs in an eventually connected

city j with or without Weibo. Specifically, we measure the correlated and contextual effects

in the pre-Weibo period by the estimate of β0 and partial them out when estimating the

network effects in the post-Weibo period.

The parameter of interest is β = β1 − β0, which captures the effect of the social media
network on the spread of events. It is positive if the spread of protests increases more across

the connected cities than across the nonconnected cities in the post-Weibo period. The

identification of this parameter requires a parallel-trend assumption: the difference in the

outcome on days with and without a protest in city j would have had the same trend across

the pre-Weibo and post-Weibo periods in the connected and nonconnected cities, had it not

been for the expansion of the social media network. Such an identifying assumption cannot

be tested directly, but we can examine the pre-trends by separately estimating coeffi cients βb

on sit−1 at a biannual frequency (indexed by b) in the pre-Weibo period.

4.3 Econometric Issues

In addition to the aforementioned correlated and contextual effects, several econometric chal-

lenges remain. First, a reflection (or simultaneity) problem would appear if events in city i

simultaneously affect events in city j, which in turn affect events in city i, and so on and so

forth in an infinite loop. This problem is more severe in the typical cross-sectional network

analysis, where all events are simultaneous. It is less severe in our panel data setting, where

some events are pre-determined. In addition, we can measure protest shocks at a daily fre-

quency and assign the temporal ordering of events. It is possible that we sometimes measure

the event date with error and hence assign an incorrect temporal ordering. This measurement

error would likely to lead to attenuation bias. By design, our specification does not capture

the spread of events within the same day. Event spread within the same day is likely to be

limited, because it takes time to organize a protest. To the extent that this happens, our

estimates will capture the total "reduced-form" effect, including any potential spread within

the same day.
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Second, logistic and probit models are prone to bias with rare events data (King and Zeng

2001) and do not work well for panel data with a large set of fixed effects. Thus, we estimate a

linear probability model, which is immune to these problems.13 Third, we check whether the

estimated process is stationary, as discussed in Appendix A.2.1. Fourth, consistency requires

no serial autocorrelation of errors. We test for serial autocorrelation in the first-differenced

residuals. Fifth, the error term in (1) may be correlated across both time and spatial units.

We use two-way clustering of errors in the temporal and spatial dimensions to address this.14

Finally, our model includes location fixed effects and lagged dependent variables. In

general, the estimates in this type of model are inconsistent, resulting in a so-called "Nickell

bias" when T is fixed (e.g., Nickell 1981; Arrelano 2003; Baltagi 2008; Hsiao 2014). In our

model, T is large, and the bias is likely to be small. Using Monte Carlo simulations, we

show that the bias is indeed negligible in Appendix A.2.2.15 Another potential issue for the

specification allowing for time-invariant heterogeneity is that the autocorrelation test that

we use may not be well suited; see Appendix A.2.2 for a detailed discussion.

5 Main Results

5.1 Time-Varying Measure of Connections

We estimate Equation (1) using the sample period until the end of 2013 (i.e., periods 0 and

1 in our three-period division). Table 1 reports the regression results: the first three columns

for protests and the last three for strikes. Table A1 reports the summary statistics of the key

variables.

The estimated coeffi cient β is positive and statistically significant across specifications.

The magnitude is barely affected by the inclusion of controls. Columns (3) and (6) allow for

arbitrary time-invariant heterogeneity in event spread across cities as described above. This

increases the estimated coeffi cient by 0.04 for protests and decreases it by 0.013 for strikes,

but neither of these changes is statistically significant.

The estimate in Column (2) implies that a protest in a given city in the last two days

increases the expected number of cities with protest incidence by 0.17, whereas the corre-

sponding number for strikes, based on the estimate in Column (5), is 0.12. Relative to the

mean event probability, the estimates in Table 1 imply increases of 34% for protests and 21%

13The outcomes from probit models are reported in Appendix Table A7.
14A common approach in a cross-sectional network analysis model is to compute standard errors corrected

for spatial correlation using the Conley (1999) adjustment, adapted to the network structure. Studies using
panel data with time-invariant networks, such as König et al. (2017), typically use the Conley approach to
correct for spatial correlation within each time unit. Our approach is more conservative than this because we
allow for arbitrary spatial correlations within each unit of time.
15 If the bias were large, one could try to address this issue by adapting the generalized method of moments

(GMM) estimators proposed in Arrelano and Bond (1991) and Blundell and Bond (1998) to our setting with
a dynamic spatial panel. However, instrumenting rare events in a setting like ours with lagged differences and
levels is likely to perform poorly.
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for strikes.16

The estimate of γ (the effect of geographical proximity) is positive and statistically sig-

nificant for strikes, but not for protests. This suggests that strikes spread to nearby cities

but protests do not. The magnitude of the spread effect through geographical connections

is similar to that driven through social media. Note that the coeffi cients of both geographic

spread and within-city spread are not identified in Columns (3) and (6), because the addi-

tional controls absorb all time-invariant spread across locations. The total number of retweets

and Weibo penetration are both positively correlated with event incidence.

5.2 Time-Constant Measure of Connections

With the time-constant measure of social media connections, we extend the sample duration

to 2017, including all three periods. Specifically, we estimate Equation (2) in a panel of cities

with at least one protest or strike for the respective outcomes.

Table 2 presents the results. Columns (1) and (2) report the OLS estimates for protests,

and Columns (4) and (5) report those for strikes. In the pre-Weibo period, neither protests

nor strikes spread significantly across cities that eventually become closely connected through

Weibo. In the period of rapid Weibo-expansion (period 1), both protests and strikes start

to spread across cities with strong Weibo connections. The average effect on event spread

through Weibo in period 1, β1 − β0, is approximately 0.14 for protests and 0.10 for strikes.
That is, an event in a given city in the last two days increases the expected number of

cities with protests and strikes by 14% and 10%, respectively. These estimated effects are

comparable to, although slightly smaller than, the corresponding effects of β in Table 1.

Relative to the mean event probabilities, the estimates in Table 2 imply an increase of 28%

for protests and 18% for strikes.17 In period 2, the estimated spread of protests falls to

a marginally significant level, whereas for strikes, it remains roughly the same and highly

significant, as shown by the F-tests towards the bottom of Table 2.

The estimated β-coeffi cients seem unrelated to the number of events in the post-Weibo

period. Although there are six times as many strike events in period 2 than in period 1

(7,857 compared with 1,365), the estimated effect on strike spread in period 2 is even slightly

smaller than that in period 1. Similarly, although there are 50% more protests in period 2

than in period 1 (1,517 compared with 1,046), the estimated spread in period 2 is 50% lower

than in period 1. The reduced spread of protests over social media in period 2 is likely to be

related to the increased strictness of media control in China, as we discuss later.

16As shown in Table A1, the mean of protest incidence is 0.002, and there are 247 cities other than the one
where the first protest takes place. Thus, the effect is 0.17/(247*.002)=0.344. For strikes, the corresponding
number is 0.12/(281*0.002)=0.214.
17When we discuss the coeffi cients concerning period 0 and period 1, the mean and number of cities are

calculated based on the same sample as the one in Section 5.1 (using the time-varying measure). Thus, the
effect for protests is 0.14/(247*0.002)=0.283. For strikes, the corresponding number is 0.10/(281*0.002)=0.178.
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Pre-trends and dynamic effects We investigate the presence of pre-trends by separately

estimating coeffi cients β on sit−1 at a biannual frequency in the pre-Weibo and post-Weibo

periods. The results are depicted in Figure 3. Neither the estimates regarding protests nor

those regarding strikes exhibit pre-trends.

The estimated spread of events through social media increases rapidly during 2010-2011,

when the use of Weibo took off (recall Figure 2). For protests, the estimated spread effect

drops significantly in 2012, bounces back to its highest level in 2013, and then trends down-

ward after 2014. This pattern coincides with changes in political sensitivity and the strictness

of censorship in China. The political situation and media control was relatively stable over

the period of 2006-2012. In late 2012, protests became politically sensitive when Xi Jinping

replaced Hu Jintao as the new government and party leader. From 2014, media control be-

came increasingly strict, as reflected in China’s fall in the Media Freedom Index published

by Freedom House (see Figure A3). For strikes, the estimated effect increases sharply until

2013 and then remains at roughly the same level. A likely reason is that the Chinese central

government does not view the spread of strikes as regime-threatening (e.g., Kuruvilla and

Zhang 2016; China Labor Bulletin 2018).

5.3 Robustness

We perform a number of robustness checks. The first two are specific to the model using the

time-constant measure of Weibo connections. One involves instrumenting the time-constant

connections by student flows across cities. The other shows that the lower frequency of events

in the pre-Weibo (vs. post-Weibo) period does not mechanically produce non-significant

estimates during that period. The remaining robustness checks apply to both models using

the time-varying and the time-constant measures of Weibo connections. In particular, we

evaluate the impact of event observability on our estimation, the sensitivity of functional

forms, and the robustness of estimates when additional controls are added.

5.3.1 Student-Mobility Instrumental Variable

A potential concern with regard to the constant measure of the Weibo network is that the F

matrix is not exogenous, even when we extensively control for fixed effects and other variables.

One possible issue is that the strength of Weibo connections may be significantly influenced

by tweets about protests and strikes, which in turn are affected by the events. However,

this seems unlikely, given that our information network is constructed based on the overall

number of tweets on topics excluding protests and strikes, and that the tweets about protests

and strikes comprise a very small share of all tweets.

To further alleviate the endogeneity concern, we conduct an IV analysis, exploiting an

arguably exogenous variation in social media communication across cities caused by student

mobility across cities before Weibo entry. College students constitute a large proportion

of the early adopters of Weibo, as they could use it to maintain communication with their
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hometown friends and relatives.18 Hence, the flows of college students from their home cities

to their college cities may drive information flows across cities on Weibo.

We collect data on student flows from their home (origin) to college (destination) cities in

2005 and 2009, based on student registration information at the city level.19 Chinese students

typically spend four years in college, and many stay in their college cities after graduation.

Others go back to their home cities but maintain contact via Weibo with their friends who

remain in their college cities. Thus, student mobility data in 2005 may predict social media

communication four years later when Weibo launched in 2009.

We find that the student flows across origin-destination city pairs correlate strongly with

Weibo connections between them. Let studentij be the log of 1 plus the mean number of

students in home city i who start college in city j in 2005 and 2009. We regress social media

connections, fij , on student flows, studentij , controlling for city fixed effects, province-pair

fixed effects, and destination-city by origin-province fixed effects.20 The estimated coeffi cient

on studentij is 0.083 with a standard error of 0.013 (see Appendix Table A2).

Next, we construct the variable

zit−1 =
∑
i 6=j

studentijyjt−1.

This variable is used to instrument sit−1 in Equation 2. Let Z be the matrix of student

flows across city pairs. The identifying assumption in the IV-estimation can be expressed by

replacing the matrix of social media connections, F , with Z in equation (3). Hence, the Z

matrix is assumed to be conditionally exogenous, after conditioning on the other included

variables, notably, the city-by-period fixed effects. This specification permits the probability

of a protest in city i to be higher in cities with larger student flows, or any other node-specific

network-related statistics, in the pre-Weibo period and differentially so in the post-Weibo pe-

riod. Similar to the discussion of equation (3), we also allow for differential spread across city

pairs with different intensity of student flows. This flexibility is important because city pairs

with large student flows probably also have strong information flows through communication

channels other than Weibo. In both the OLS and IV specifications, the contextual and cor-

related effects are measured in the pre-Weibo period and partialed out in the estimation of

the Weibo effect. Consequently, we are able to identify the effect of social media through the

18The launch of Weibo occurred immediately after the Chinese government banned Twitter and Facebook
and shut down domestic service providers. The users of these terminated forms of social media were mostly
"technology geeks" and college students, who later comprised the majority of early Weibo users. In a dataset
containing Weibo posts referencing "vaccine" with detailed user information, we find that, in 2019 and 2010,
the age of nearly 70% of users is below 25.
19The student registration information is from an administrative dataset covering students who took the

Chinese national college extrance exam in 2005 and 2009. The data are maintained by CIEFR at Peking
University and have been used in several studies (e.g., Graff Zivin et al. 2020). We thank Ruixue Jia and
Hongbin Li for sharing the data.
20We control for destination-city by origin-province fixed effects because some universities set quotas for

origin provinces.
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changes in the F -matrix instrumented by the Z-matrix before and after Weibo was launched.

The coeffi cients in the first-stage regression are significant in all three periods and are

stable across periods, as shown in Appendix Table A3. The IV estimates are reported in

Columns (3) and (6) of Table 2. The estimated social media effects on event spread are

generally similar to those obtained from the OLS regressions. A caveat is that the IV estimate

is smaller in period 1 for strikes and in period 2 for protests than its OLS counterparts. This

implies that, in the IV estimation, the difference β1 − β0 is no longer significantly different
from zero for strikes, while it is significantly different from zero for protests. The dynamic

effects, estimated using the student-mobility IV, are presented in Figure A6. The estimates

are similar to their OLS counterparts in Figure 3, although the standard errors increase

modestly, and the marginal effect appears slightly lower for protests during 2010-2012.

5.3.2 Mechanical Zero Effect in the Pre-Weibo Period

As noted above, the estimated effect of Weibo on event spread is not closely related to the

number of events in different post-Weibo periods. Concerns may remain that the smaller

number of events in the pre-Weibo period mechanically reduces the estimated effects.

We investigate this concern by simulating events with a process that matches the observed

event frequencies within each period, while keeping the underlying propagation of event waves

across cities equally strong across periods. The details are provided in Appendix A.2.3. In

brief, in each of the 100 simulated data sets, we estimate β0 and β1 using the specification

in Equation (2). We find that there is no mechanical bias in the estimated β0 coeffi cient,

and we have power to test the hypothesis β1 > β0 (see Appendix Table A4). Given the

described data-generating process, we conclude that at the observed event frequency there

is no mechanical zero effect. Of course, one could imagine some other distinct features in

the pre-Weibo data-generating process that would depress all the coeffi cients in Equation

(2). However, the geographical spread of strikes, captured by the estimated γ-coeffi cients in

Table 2, is equally large in the pre-Weibo period and during 2010-2013, and then falls during

2014-2017. Hence, the coeffi cients in the data-generating process do not seem to be uniformly

depressed in the pre-Weibo period.

5.3.3 Observability

Social media can be used by our data sources to observe and record protest and strike events.

Thus, growing Weibo use in a city may increase the probability that an event in that city is

observed, causing a correlation between Weibo penetration, wit, and the number of reported

events, yit, even in the absence of causal effects. Similarly, an increase in observability may

increase the frequencies of reported events yit and yjt−1 (and hence sit−1), but it is less clear

whether observability will induce a spurious correlation between yit and sit−1.

We examine this issue using Monte Carlo simulations. Specifically, we investigate whether

we can consistently test the null hypothesis that β = 0 in Equation 1, allowing for a positive
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correlation between event observability and Weibo penetration. To this end, we first simulate

the event data, ỹit, under the null hypothesis that β = 0. Next, we assume that the probability

of a simulated event (ỹit) being reported is strongly and linearly increasing in wit. Then, we

draw a set of observed events yit with probability pit from the simulated events ỹit.21 Finally,

we estimate the model in Equation 1 on the observed simulated events, yit.

As shown in Figure A7, observability induced by social media does not generate any

spurious event-spread effect. Hence, we conclude that we can consistently test the hypothesis

that β = 0, even if event observability increases in the use of social media.

5.3.4 Functional Form

We assume that sit−1 and sit−1 enter Equations 1 and 2 linearly. Appendix Tables A5 and

A6 report the results from estimating a logarithmic model, in which sit−1 is replaced by the

transformation ln(5sit−1+1), and so is sit−1. As a further robustness check, Table A7 shows

the results from a probit regression of Equation 1, where the date fixed effects are replaced

by a quadratic time trend to avoid the problem of incidental parameters. The estimates are

statistically significant across all specifications, and the implied marginal effects on event

probabilities are similar to those estimated from the linear model.

5.3.5 Additional Controls

We create additional control variables to capture the changing spread of events related to

other city-pair characteristics in the following form:

cp
∑
j 6=i

ωijyjt−1,

where cp is a period indicator dummy variable and ωij = ωiωj is constructed for each of

our control variables ωii in 2008. For example, when ωij refers to population, it is the

product of the log population in city i in 2008 and the log population in city j in 2008.

We interact these variables with period-fixed effects and include them in the specifications

underlying Table 2. The results are reported in Appendix Table A8. The estimates are not

significantly affected by these additional controls. The only exception is the β1 coeffi cient

in the estimation regarding strikes, which falls, after we include the number of cell-phone

users, rendering β1−β0 non-significant. The fall in the estimated β1 could occur because the
spread of strikes between cities with high-cell phone coverage increases exactly at the time

of Weibo expansion but for reasons unrelated to social media. However, we suspect that it

21To assess the size of this increase in observability, we use the estimated coeffi cient β̂0 on Weibo posts,
wit, in Table 1. This coeffi cient is likely to capture both increased observability and a presumably positive
causal effect of wit on yit. Hence, β̂0 is an upper bound on the response in observability due to wit. The
linear increase in observability due to Weibo penetration in our simulations is set so that it exceeds this upper
bound. More precisely, pit increases by 30% as wit increases from zero to its maximum value.
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is caused by over-controlling one channel through which social media operates because cell

phones are the main device used by Chinese people to access Weibo.

To summarize, the Weibo effect on strike spread in period 1 is sensitive to the control

for cell-phone use but non-significant when we instrument Weibo connections with student

mobility across cities. Hence, our conclusion regarding this estimate is more guarded.

6 Implications: Speed, Scope and Size

In China, protests confined to a small number of cities and with a narrow scope have limited

implications for national policies and regime changes. By establishing strong information

links between distant cities, social media has the potential to help break the boundary of

event spread. Therefore, it is natural to investigate whether social media enables individual

protests to evolve into widespread movements that affect a large number of people in many

cities and from diverse social backgrounds. To this end, we examine how social media affects

the speed and duration of event spread as well as the spread of protests across various causes

and strikes across multiple industries. Next, we estimate the effect of social media on the

magnitude of protest waves, paying particular attention to the likelihood of very large event

waves manifested by simultaneous events across many cities that influence a substantial share

of China’s population.

6.1 Speed and Duration

So far, we have analyzed the short-term (within two days) response to an event shock mediated

via information flows on social media. To examine how the effect persists over time, we

estimate the same model with the time window extended to various durations. Figure 4

depicts the estimated spread effect of events occurring within 1-2 days, 3-7 days, 8-30 days,

31-90 days, and 91-180 days. For both protests and strikes, the effects are greatest in the

2-day window, then drop drastically, and become small and non-significant after 3-7 days.

Thus, social media rapidly spreads events but the effect dies out quickly.

The rapid but short-lived response to social media communication is consistent with

the notion of “the window of opportunities” stressed in the studies of protests in China by

sociologists (Zhou 1993) and political scientists (Weiss 2013; Truex 2019). The basic idea is

that there are certain narrow windows during which protests are allowed without substantial

political risks. Tweets about protests in other cities may signal that such a window has

opened, which encourages users in other cities to grasp the opportunity to protest before it

closes. The short-lived response may also arise if protesters are motivated by spontaneous

emotions upon seeing tweets about protests and strikes (e.g., Jasper 2008; Passarelli and

Tabellini 2017). In our dataset, the abnormal bursts of tweets about protests and strikes last

for approximately two days, similar to the duration of the significant social media effects.
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6.2 Scope

As previously discussed, events that only spread within the same cause and industry are

bounded in size and influence and are unlikely to be perceived as regime-threatening. It seems

likely that strikes predominantly spread within industries and that protests predominantly

spread within causes. For example, the waves of school teacher strikes in 2014-2015 spread

within the education sector (Chang and Hess 2018). The protests against corruption that

originated from Wukan and spread among farmers were for the same cause (recall Section

3.1). However, the example presented in Section 3.5 suggests that strikes and protests may

also spread across industries and causes.

To study whether social media increases the scope of events, we separately estimate the

spread effect induced by social media within and across the protest causes and strike industries

that are listed in Figure 1. Table 3 shows that the estimated spread effect through social

media is six to eight times higher within the same category (protest cause and strike industry)

than its cross-category counterpart. This result confirms that the spread of events through

social media predominantly occurs within categories.

Nevertheless, the cross-category spread induced by social media is statistically significant.

Although the effect of an individual event is smaller across categories than within categories,

the total effect of spread across categories is larger because there are many more events

across all categories. The means of the Weibo-weighted events within and across categories

are reported in the last two rows of Table 3. The aggregate effect of protests spreading

across protest causes is 60% larger than that within causes. Similarly, the aggregate effect

across strike industries is 20% larger than that within industries. Thus, social media helps

break down the boundaries of protest causes and strike industries, leading to a greater overall

impact on event waves than through within-category spread.

6.3 Size and Probability of Large Event Waves

China’s big cities lie far apart, and each contains only a small fraction of the country’s

population. Therefore, protests in one or a few cities are easy to contain and barely have

any national implications. Our setting provides a unique opportunity to study the impact

of social media on event waves, measured by the number of essentially simultaneous events

across multiple cities. We are interested in estimating the mean size of event waves as well

as the likelihood of very large event waves.

This inquiry requires additional investigation of the dynamic process of event waves. A

key question is whether the number of events will continue to grow at a constant rate even

when the waves increase in size, as implied by the model in Equation (1) which is linear in

sit−1. We examine this linearity assumption using a nonparametric least squares regression

(Cattaneo et al., 2022). Figure 5 plots the nonparametric conditional mean function (the

dots), together with a linear, a logarithmic, and a 5th-order polynomial approximation, using

the specification in Equation 1.
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The conditional mean function is approximately linear for most of the support. This can

be seen more clearly in the lower panel, which zooms in on observations with sit−1 less than

0.4 (the vertical line marks the 99th percentile in the distribution of sit−1). As all three

approximation functions are roughly linear in this range, the estimated average marginal

effects they produce are similar to that from the linear model.

However, as an event wave grows, the marginal spread effect of an additional event (the

slope of the curve) falls. For suffi ciently high values of sit−1, there is no spread of events

through social media. This curbs the size of protest and strike waves. There are several

possible reasons for this collapse of large event waves. First, censorship and repressive actions

tend to increase when a protest wave intensifies. Second, there exists a natural limit to the

number of cities susceptible to a particular protest wave. For example, a protest against

improper conversions of agricultural land to commercial land cannot spread further when

most of the susceptible cities have already protested.

We examine the impact of social media on the size of protest waves by simulating events

under two scenarios: with and without social media. In the scenario with social media, we

allow protests to spread through Weibo using the estimated 5th-order polynomial approx-

imation of the conditional mean function. In the scenario without social media, this term

is dropped from the data-generating process. Other aspects of the data-generating process

remain the same in both scenarios.22 We simulate the data 1,000 times, obtaining 1,000

possible histories of protest events in our city panel up to 2013. For each simulation and

year, we compute two measures of the largest event wave: the maximum number of cities

experiencing protests within the same week and the corresponding maximum share of the

population in the cities experiencing protests.

Figure 6 shows the yearly average of these two variables in the scenarios with and without

social media, as well as in the real-world data. The mean of the simulated data with social

media matches the real-world data fairly well. In the pre-Weibo period, on average, the largest

protest waves affect cities comprising only 4% of the population, which approximately equals

the sum of the population of the two largest cities in China. This is consistent with the fact

that, before the advent of social media, no source informed large audiences of protests and

strikes in China. Hence, limited information flows restrict event spreads.

In the post-Weibo period, we estimate that the size of event waves would increase even

without social media spread, but the increase would have been substantially smaller. In

2013, without social media, the largest event waves affect only 11 cities comprising 6% of the

population. With social media, the largest event waves affect 28 cities comprising around

15% of the national population. Apparently, social media connect these large cities, enabling

protests to spread rapidly across them.

Furthermore, the probability of very large event waves increases dramatically with social

media. Consider 2013 again. With social media, there is a 5% probability that an event

22For details about the data-generating process, see Appendix A.2.4.
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wave affects 40 cities or more, containing 22% or more of China’s population. Without social

media, the corresponding numbers are 15 cities containing 8% of the population. The reason

for this large difference is that the dynamic feedback induced by social media increases not

only the mean but also the variance of the protest outcomes, thereby substantially increasing

the likelihood of very large protest waves.23

7 Censorship and Mechanisms

We have shown that, even in a strictly controlled information environment, social media has

a considerable effect on the spread of protests and strikes. This appears puzzling because

content that is typically deemed crucial for social media to affect protests is likely to be

censored in China. To better understand what potential mechanisms may drive the estimated

social media effects, we need a clear understanding of how censorship is performed in China

and what content is visible to social media users. In this section, after a brief description of

censorship in China, we provide a measure of local censoring intensity and show that it does

not significantly bias our estimated effects on event spread. Then, we analyze whether we

can use the tweets in our downloaded data to infer what content is visible to users, given that

some tweets are censored before we download them. Finally, we discuss what mechanisms

may be at play given the available content.

7.1 Background

Censorship of Weibo tweets is conducted in two ways (King et al., 2014). First, tweets that

contain sensitive keywords are automatically held in quarantine for review by censors and

are then released or deleted. Second, tweets without sensitive keywords are immediately

published but later censored. Researchers have studied the latter type of censorship by

recording whether posted tweets are later deleted. In the daily operation of Weibo, the

vast majority of posts are on nonsensitive topics, and only a tiny share of regular posts are

censored. For example, Fu et al. (2013) estimate that only 0.01% of the posts published by

a large sample of VIP Weibo users are censored. When tweets involve sensitive topics such

as collective action, the share of censored posts can be as high as 13% (King et al. 2013).

23To see this, consider the simple first-order serial autoregressive process

yt = ρyt−1 + εt.

Let m = 1
1−ρ . Then, the mean and variance of the process are y = mε and var (y) = m2var (ε), respectively.

Therefore, an increase in the autocorrelation coeffi cient, ρ, increases both the mean and variance of yt. The
increase in variance implies an increase in the probability of very high realizations of yt relative to its mean.
Our setting is more complex than this simple example, but the basic mechanism remains the same.
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7.2 Local Censoring Intensity

In 2015, we went back and recorded which posts in our dataset were still online. We choose

a subset of 156,553 posts on sensitive topics from our dataset, including 10,000 in each of the

protest and strike categories. The deletion rate is 27%. We do not know for certain which

posts were censored, and which were deleted by users themselves. However, as Figure A8

shows, our regional deletion rates correlate strongly with other regional measures of media

control in China, such as the measure of social media censorship in Bamman et al. (2012)

and the measure of pro-government media bias in Qin et al. (2018).

In Appendix A.3.1, we examine whether our measure of social media connections is en-

dogenous to censorship, by regressing fij on the share of deleted posts in city i and city j.

We find no evidence of such endogeneity. This is hardly surprising, because our construction

of fij is based on tweets across all subjects excluding protests and strikes, and only a neg-

ligible fraction of these are censored. Hence, we find no evidence that censorship biases our

estimated effect on event spread through fij .

Moreover, we investigate whether the spread effects are smaller in areas with higher

censorship intensity. We include the interaction between sit−1 and the share of deleted posts

in city i in the regression Equation (1). We find that the Weibo effect on event spread does

not vary significantly across regions with different levels of censorship. A possible reason is

that censorship in a city does not affect the reading of incoming tweets from other cities. The

effect of censoring outgoing tweets is diffi cult to identify, as discussed in A.3.1.

7.3 Censoring, Downloads, and User Exposure

In section 7.4, we will evaluate possible mechanisms that may explain our large and systematic

effects of social media on event spread using a simple necessary condition: for a certain

mechanism to play a significant role, the content supporting this mechanism must be highly

visible. For example, if information on where and when to meet on social media explain our

findings of large and systematic effects, then tweets with this logistics content must circulate

widely. Conversely, if this type of content is read by very few users, we can rule out the

associated mechanism as the main explanation of our empirical findings. The assessment

of content visibility is more complicated in the presence of censorship than in a free media

environment because some content may have circulated widely before being censored. A

particular issue is that our dataset may miss some posts that were first published and then

censored if our downloading was slower than censoring.

With these complications, the key question is whether we can draw conclusions about the

visibility of specific content based on our downloaded tweets. The answer is yes for tweets

that are never censored or are automatically quarantined before further action, because, in

this case, the downloaded posts are precisely those that are visible to users. For posts that

are first published and later censored, the answer depends on the share of tweets read by
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users before they are censored, as well as the share of tweets that are downloaded before

censorship, as illustrated below.

Consider two types of content referencing protests, labelled A and B. Type-A content

reveals logistics information (e.g., where and when to meet). Type-B content just talks

about the occurrence of a protest or expresses sentiment. Because Type-A content imposes a

greater political risk to the government than Type-B content, the Chinese government censors

Type-A content rapidly but not Type-B content. Given that data downloading is slower than

user reading of tweets, users may read Type-A tweets that are censored before we download

them. This is not the case for Type-B tweets, because we eventually download all of them.

Hence, the ratio of users who have read type-A tweets to those who have read Type-B tweets

will be larger than the corresponding shares of downloaded tweets. Consequently, the ratio

in the downloaded tweets may be a biased measure of the ratio of the share of tweets read

by users (user exposure for short).

The magnitude of this bias depends on the speed of (i) censoring, (ii) user reading, and

(iii) tweet downloading. Below, we briefly describe how we measure it, leaving details to

Appendix A.3. Zhu et al. (2010) measure the speed of censoring by the minutes that pass

after a tweet is posted. Censorship of this type is fast: 30% are deleted within half an hour

and 90% within one day. The speed of reading tweets is not directly observable but can be

reasonably approximated by the speed of retweeting. In our dataset, user retweeting is almost

as fast as censoring: 28% of the retweets occur within one hour after the original posting

and 75% within one day. Our downloading is considerably slower. Tweets are downloaded

at a constant frequency (typically daily), independent of the timing of tweet posting. The

empirical distributions of censoring and retweet speed are plotted in Figure A2.

We estimate the share of tweets that are read and downloaded before censorship by sam-

pling independent draws from the three empirical distributions described above. On average,

approximately one third of the users who would have retweeted (read) a post in the absence

of censorship have done so by the time of censoring. For users from whom we download

tweets at a daily frequency, the simulated probability of downloading a tweet that is later

censored is 0.23.

Based on these numbers, we conclude that using downloaded posts as a proxy for user

exposure underestimates user exposure to censored content by around 30%, relative to un-

censored content. This estimate is for content that does not contain sensitive keywords. In

reality, many posts susceptible to censorship contain sensitive words and are automatically

quarantined. For these posts, there is no underestimation because we see the same posts as

users do. Hence, the average underestimation across all posts is likely to be considerably

smaller than 30%.

Another discrepancy between user exposure to content and the number of downloaded

tweets arises because the latter does not account for the number of readers of each post. Even

though the number of posts are similar across content types, some content may be read by
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many more users. As retweets are increasing in the number of users reading tweets, we also

compare the number of retweets of different types of content below.

7.4 Mechanisms and Supporting Content

Now, we describe the availability of different types of Weibo content and its implications for

determining which mechanisms may explain our findings.

7.4.1 Scarce Content

Where and when to meet The most direct way in which social media may affect protests

and strikes is by providing logistics information on where and when to meet. Theoretically,

logistics information is typically modelled as reducing the cost of protesting (e.g., Little

2016; Enikolopov at al. 2020). Empirically, several studies show that protesters use social

media to communicate logistics information and organize events, such as calling for action

or at least mentioning where and when a protest is to take place, as documented in Russia

(Enikolopov et al. 2020), in Turkey and Ukraine (Tucker et al. 2016), and during the Arab

Spring (Steinert-Threlkeld 2017). The existence of logistics information on social media is

even proposed as a necessary criterion for social media to affect protest participation (Tucker

et al. 2016).

However, in China, content related to protest logistics is scarce on social media. Based on

a random sample of 1,000 posts about protests, only 15 posts, retweeted a total of 15 times,

involve a call for action, and only two explicitly state the time and location of action. In a

random sample of 1,000 posts about strikes, none calls for action. Because of censorship, it

could be that the visibility of posts with logistics content is more than proportional to the

corresponding share in our downloaded posts. But the difference is likely to be small. Recall

from Section 7.3 that most users do not read posts momentarily, and posts that exist for a

short period and later censored are unlikely to be widely visible. Further, the few tweets with

logistics content that we find do not seem to have been widely read. On average, they only

have one retweet per tweet.

Regardless of whether it is caused by censorship or self-censorship, communication of

logistics information is unlikely to be an important reason for the widespread social media

effects on collective action that we find in China. This is consistent with our interviews

with staff of the China Labor Bulletin in 2018, who stated that strike participants typically

share logistics information via private text messaging services and use Weibo to gain public

attention.

Other protest tactics Social media may spread protests and strikes because it carries

information about effective protest/strike tactics that lowers the cost or increases the benefits

of protesting (e.g., Chen and Suen 2016; Little 2016). Examples of such information are

how to counteract the effects of tear gas (Tucker et al., 2016) and whether it is effective
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to complement strikes with other actions, such as demonstrations and petitions to local

administrators (Chang and Hess 2018).

However, in our random samples of 1,000 posts, only five protest posts and 13 strike posts

mention tactics, such as whether violent or peaceful protests are more effective and what to

demand from and how to cope with the government. Consistently, only a few posts discuss

the outcome of an event, such as whether the protest is met with concessions. The posts

that indeed talk about tactics receive, on average, only two retweets. Given the scarcity and

limited circulation of posts mentioning tactics, the tactic-learning mechanism seems unlikely

to be a significant driver of the spread of protests and strikes in China.

7.4.2 Abundant Content

Causes and emotional reactions Most posts about protests and strikes in our random

samples report facts about the events other than logistics and tactics, coupled with emotional

reactions, such as the protesters’anger and sympathy. Many posts – 164 about protests and

223 about strikes– discuss what causes the event and the underlying social problems such as

corruption and persistent wage arrears. These posts are among the most retweeted– 3,389

times for the protest posts and 2,602 for the strike posts.

To investigate which posts circulate widely, we inspect a sample of the 100 most retweeted

posts about protests and strikes. After removing those that are repeated or irrelevant, the

sample contains 91 posts. Of them, 55 talk about ongoing events, almost all mentioning the

cause of the event. The remaining 36 posts comment on past events, government policies,

or social problems. The majority of these popular posts convey certain emotional elements.

Many posts express protesters’anger after a description of government repression. Another

common type of emotional content is outsiders’reaction to events, with posts stating that

the protesters are unfairly treated and expressing sympathy and moral support.

A significant number of posts– 137 about protests and 42 about strikes– question existing

social institutions. The content of these posts ranges from criticism of the legal system to

complaints about the lack of free speech. Because of their general nature, these posts have

the potential to spread events across causes and industries.

Potential mechanisms The type of abundant content described above can spread protests

and strikes for several reasons. For example, people who learn from social media that others

are protesting may conclude that a "window of opportunity" has opened, in which protests

and strikes are allowed without substantial political risks (Zhou 1993; Weiss 2013; Truex

2019). Such a window may also open if there are complementarities among simultaneous

protests across cities, which increase the chance of obtaining concessions or reduce the risk of

punishment (e.g., Granovetter 1978; Edmond 2013; Little 2016; Barberà and Jackson 2020).

It seems that merely observing a protest for a certain cause in another city will increase the

expected benefits and lower the expected cost of protesting. People simply need a public
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signal of a focal period to implicitly coordinate their actions.

Protests may also spread if protesters are motivated by emotions such as anger (Jasper,

2008; Passarelli and Tabellini 2017), and social media is indeed an important channel to

spread emotions (Kramer et al. 2014). The escalation of protests due to strategic com-

plementarities or emotional mobilization is a general phenomenon, not restricted to China.

In other countries, these mechanisms are also likely to play a significant role in spreading

protests even if social media does not circulate content that explicitly helps organize protests.

They are particularly important in authoritarian regimes where the opportunities to explicitly

organize anti-government protests are limited.

7.5 Discussion

As mentioned above, there is ample evidence that communication of logistics or tactics infor-

mation via social media facilitates protests in a relatively free media environment. In China,

however, this type of content is largely absent, likely because the Chinese government censors

posts that have the potential to spur collective action (King et al. 2013, 2014).

This provides an opportunity to study whether removing logistics information mutes the

effect of social media on protests and strikes. We find that, despite the scarcity of information

on where and when to meet and how to organize events, Chinese social media still have a

notable impact on the spread of protests and strikes. This finding suggests the relevance of

the other potential mechanisms, such as those discussed above. It also points to a trade-off

between eliciting information from social media and curbing the spread of protests. The

Chinese government cannot prevent events from spreading without removing exactly the

information it needs for surveilling local policies and monitoring corruption.

One natural question is why the Chinese government allows the circulation of tweets

describing protests and strikes but restricts the exposure to information on logistics and

tactics. One likely explanation is that the government allows the former content because this

information is valuable for surveillance but removes the latter because its visibility would

lower participants’cost of protesting without providing the government with new information.

Suppose that the regime allows protests of limited scale and scope, which can inform the

government about unpopular policies and local corruption. Protests are a costly and thus

informative device to convey public grievances. Social media provides a cheap way for the

government to gather information about the causes and the severity of social problems. Hence,

protests and social media combined produce credible and detailed information. Suppose

further that the government wishes to address problems with severity above some threshold

value, and that the number of protesters increases in the severity of the problem and decreases

in the cost of protesting. Social media content about logistics and tactics lowers the cost of

protesting and increases the size of protests at a given level of problem severity, but it does

not provide additional information value to the government.
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8 Conclusion

This paper studies how social media affects the dynamics of protests and strikes in China.

The media environment in China is significantly less free than in most other countries. At

the same time, the Chinese government is known for actively collecting information from

social media for surveillance. China’s model of strategic control of social media may be used

by other regimes to maintain stability. Thus, it is important to systematically examine the

effect of social media on the spread of protests and the probability of very large waves of

simultaneous events with significant consequences at a national scale.

Despite China’s strict control of anti-government collective action and extensive media

censorship, we document thousands of protest and strike events and millions of tweets ref-

erencing them on social media. We use retweets from one city of tweets from another city

within the last few months to measure information diffusion between cities through the social

media network. Then, we estimate the effect of the changing social media connections on

the spread of protests and strikes in a panel of Chinese cities during 2006-2017. We exploit

the time-series dimension of our data to address major issues in network econometrics and

formulate a difference-in-differences type of estimator, aided by instrumental variables, to

establish causality.

We find that social media rapidly spreads protests and strikes across cities. Moreover,

social media significantly increases the scope of events such that protests spread to other

protests with different causes and strikes spread to strikes in other industries. These effects

dramatically increase the likelihood of very large protest waves, which simultaneously affect

dispersed cities comprising a significant share of the Chinese population.

Remarkably, the strong effects of social media are found amidst China’s substantial efforts

to censor content used to organize unauthorized collective action. Given the scarcity of posts

specifying where and when to meet and how to organize protests, the explicit-organization role

of social media in China is less likely to be as important as in a freer media environment. The

content circulating widely on Chinese social media supports other mechanisms, which enable

coordination through signaling the opening of a "window of opportunity" or mobilization

through people’s emotional responses. These mechanisms are not specific to the Chinese

context; they play a prominent role in the theory of protests (e.g. Granovetter 1978; Jasper

2008). Hence, our finding that purging social media of logistics or tactics content does not

mute its effect on spreading protests and strikes is also relevant to other settings.

Our findings suggest that authoritarian regimes face an unavoidable censorship trade-off.

To limit the spread of collective action, China must shut down public discussion about causes

of social problems and silence people’s emotional reactions and thus bear the cost of losing

bottom-up information that is valuable for surveillance and monitoring.
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Tables and Figures 

Table 1. Effects of social media on event spread: time-varying measure of connections 

 (1) (2) (3) (4) (5) (6) 
VARIABLES Protest Protest Protest Strike Strike Strike 

       
Social-media spread (𝛽) 0.170*** 0.169*** 0.209*** 0.122*** 0.120*** 0.107*** 

 (0.044) (0.043) (0.060) (0.026) (0.025) (0.038) 

Geo-distance spread (𝛾) -0.031 -0.030  0.143** 0.137**  
 (0.037) (0.036)  (0.058) (0.055)  
Number events 1-2 days prior(𝛼) 0.015** 0.015** 0.000 0.030*** 0.030*** 0.000 

 (0.007) (0.007) (0.000) (0.007) (0.006) (0.000) 
Total number retweets 0.002*** 0.002*** 0.003*** 0.002** 0.002 0.002** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Weibo posts 0.006*** 0.006*** 0.004** 0.010*** 0.009*** 0.007** 

 (0.002) (0.002) (0.002) (0.004) (0.003) (0.003) 

       
Controls No Yes Yes No Yes Yes 
Observations 670,996 670,996 670,996 713,702 713,702 713,702 
R-squared 0.017 0.017 0.220 0.027 0.027 0.239 
QPtest 0.05 0.13  0.14 0.34  

Notes: Results are from a linear regression of an event dummy. The unit of observation is city by date. The 

regression includes city and date fixed effects. Controls include population, GDP, shares of the industrial 

and tertiary sectors in GDP, and the number of cell-phone users. Columns (3) and (6) allow for arbitrary 

time-invariant heterogeneity in the spread across city pairs. The QP statistic reports the p-value of the test 

for serial correlation in fixed-effects models (Born and Breitung, 2016). Standard errors are two-way 

clustered by date and city. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2. Effects of social media on event spread: time-constant measure of connections 

    (1) (2) (3) (4) (5) (6) 

VARIABLES  Protest Protest Protest Strike Strike Strike 

  OLS OLS IV OLS OLS IV 

          
Social-media spread, 𝑠𝑖𝑡−1 𝛽0 0.029* 0.027 0.032 0.026 0.031 0.059 

  (0.015) (0.017) (0.028) (0.029) (0.032) (0.037) 
 𝛽1 0.150*** 0.169*** 0.162*** 0.127*** 0.134*** 0.098*** 

  (0.041) (0.043) (0.056) (0.028) (0.030) (0.034) 
 𝛽2 0.078*** 0.084*** 0.051** 0.116*** 0.119*** 0.132*** 

  (0.020) (0.021) (0.023) (0.015) (0.016) (0.021) 
Geo-distance spread, 𝑑𝑖𝑡−1 𝛾0 -0.004 -0.011 -0.013 0.104 0.105 0.093 

  (0.016) (0.016) (0.018) (0.063) (0.065) (0.074) 
 𝛾1 -0.026 -0.021 -0.016 0.107* 0.106* 0.131* 

  (0.036) (0.035) (0.040) (0.056) (0.058) (0.074) 
 𝛾2 0.022 0.021 0.035 0.040 0.048 0.041 

  (0.023) (0.024) (0.023) (0.032) (0.031) (0.032) 

        
Controls  No Yes Yes No Yes Yes 

Observations  1,140,224 1,028,085 999,472 1,119,858 999,472 1,092,477 
R-squared  0.018 0.019 0.001 0.050 0.001 0.003 
P-value: 𝛽1 = 𝛽0  0.006 0.002 0.035 0.008 0.011 0.307 
P-value: 𝛽2 = 𝛽0  0.067 0.046 0.661 0.001 0.004 0.041 
Kleibergen-Paap F   

  
34.26   38.49 

  Period 0 Period 1 Period2    
Total No. Of Protests  126 1046 1517    
Total No. Of Strikes  193 1365 7857    

Notes: Results are from a linear regression on an event dummy variable. The unit of observation is city by 

date. The regression includes lagged events, 𝑦𝑖𝑡−1 interacted with period-fixed effect, city-by-period, and 

date fixed effects. Controls include population, GDP, shares of the industrial and tertiary sectors in GDP, 

and the number of cell-phone users. Columns (3) and (6) report results from the IV (student-mobility) 

regressions. Standard errors are two-way clustered by date and city. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 3. Event spread, within and across categories 

  (1) (2) 

 Protest Strike 

Within   
Number events 1-2 days prior, retweet weighted 0.0639*** 0.0607*** 

 (0.0132) (0.0140) 
Number events 1-2 days prior, distance weighted -0.0094 0.0943*** 

 (0.0106) (0.0266) 

Across   
Number events 1-2 days prior, retweet weighted 0.0086*** 0.0064*** 

 (0.0029) (0.0020) 
Number events 1-2 days prior, distance weighted 

categories 
-0.0017 0.0056 

 (0.0026) (0.0040) 

   
Observations 8,722,948 7,137,020 

R-squared 0.0077 0.0162 

Category cause industry 

Mean (within-category) 0.0013 0.0020 

Mean (across-category) 0.0152 0.0179 

Notes: Results are from a linear regression of an event dummy. The unit of observation is city by date. The 

regression includes city and date fixed effects. Both regressions include controls such as population, GDP, 

shares of the industrial and tertiary sectors in GDP, and the number of cell-phone users. Standard errors are 

two-way clustered by date and city. *** p<0.01, ** p<0.05, * p<0.1. 
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Figure 1. Events by size and cause

 

Figure 2. Monthly number of events and number of Weibo posts per capita over time  
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Figure 3. Dynamics of marginal effects using constant measure of social media connections 

 

Notes: The graphs plot the estimated biannual coefficients on the time-constant measure of social media 

connections, relative to the mean in the pre-Weibo period. The bars indicate the 95% confidence interval. 

Figure 4. Effect of social media on event spread: speed and duration 

 

Notes: The graphs plot the estimates of the Weibo spread effects specified in the baseline model with 

various time windows. The bars indicate the 95% confidence interval. 
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Figure 5. Functional forms  

 

Notes: The x-axis indicates 𝑠𝑖𝑡−1. The y-axis plots the nonparametric conditional mean function (the 

dots), together with a linear, a logarithmic, and a 5th-order polynomial approximation, using 

the specification in Equation (1). The vertical line marks the 99th percentile of the  𝑠𝑖𝑡−1-distribution. The 

bottom panels zoom in on the lower segment which contains most of our data.   

 

Figure 6. Simulated event waves with and without social media  

 

Notes: The graphs plot the number of cities (left) and share of population (right) that the largest event waves 

reach in the same week in simulations of the model with and without social media. The points denote the 

yearly average, and the bars denote the corresponding 5-95 percentile range. 



A Online Appendix to Social Media and Collective Action in

China

A.1 Specification

To examine the problem of correlated and contextual effects, we start with the formulation

similar to Moffi tt (2001). Suppose that we have g = 1, ...G groups and that there are only

two cities (i = 1, 2) per group. Let yig be the outcome variable of interest for city i in group

g, xig be an observed characteristic of i, which in our case is the lagged outcome, and vig be

an unobservable characteristic. Assume that the model that we wish to estimate is

y1g = α0 + αx1g + βx2g + v1g,

y2g = α0 + αx2g + βx1g + v2g.

In particular, we are interested in β, which captures how lagged events spread from city 1g

to connected city 2g, and vice versa.

A concern is that v1g and v2g are correlated, for example, because of correlated and

contextual effects. The correlated effects are typically parametrized by an unobserved group-

specific unobserved shock, δg, which is part of the error and for which

E (δgxig) 6= 0.

The contextual effects are typically parameterized by including a term γx2g in the error term

v1g. In our case, contextual effects could arise from events spreading through communication

channels that are correlated with the social media network, such as cell-phone use. Thus, the

error term, v1g, can be decomposed as:

v1g = γx2g + δg + ε1g.

By the same token, v2g is similarly defined.

In this model, γ 6= 0 implies contextual effects and δg 6= 0 implies correlated effects.

Clearly, β is not identified in the presence of these effects.

A.1.1 Setup

We estimate our model using a panel of N Chinese cities at daily frequency, t. Let yit be

a dummy variable indicating the occurrence of a protest. Suppose that the probability of a

protest in city i on day t, Pr(yit) depends on the number of people who are informed about

protests yjt−1 in another city j at time t− 1. Let fijt be the number of people in city i who
read posts from users in city j at time t and assume that the number of people who learn

about the protest is fijtyjt−1. We wish to model how protests spread from city j to city i as
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a function of fijtyjt−1.

We illustrate the identification assumptions with the following simple example. There are

two periods (pre-Weibo and post-Weibo) and two groups of cities (N,C) that may be affected

by a protest in another city j on a previous date. Cities in group N are never connected

via social media to city j, whereas cities in group C are connected via social media to city

j in the post-Weibo period only. Social media connections increase the probability that a

protest spreads from j to other cities. In both periods, there are some days with protests

in location j, and some days without such protests. Let yji−1 be an indicator variable for a

protest in city j at t − 1, fi be an indicator variable for city i belonging to group C and Pt
be an indicator variable for the post-Weibo period. Then, we have

yit = δ + αyit−1 + β
pfiyjt−1 + vit, (4)

where βp measures the effect of events spreading through the social media network with β0 = 0

in the pre-Weibo period (p = 0) and β1 = β in the post-Weibo period (p = 1). Further, let

vit = γfiyjt−1 + fiδg + εit, (5)

where γfiyjt−1 captures the contextual effects and fiδg captures the correlated effects.

A.1.2 Triple-Differences Estimator

Consider the following triple-differences equation in the linear probability model, with out-

come variable yit being a protest in city i at time t,

yit = β0 + β1fi + β2yjt−1 + β3Pt (6)

+β4fiyjt−1 + β5fiPt + β6Ptyjt−1

+βPtfiyjt−1 + εit.

To simplify the exposition, we drop from the equation the term αyit−1, which captures within-

city spread. The conditional mean function E [yit|fi, yjt−1, Pt] can take on eight values,
and the model is saturated because it has eight parameters. The first row of Equation (6)

contains the three main effects and the constant, the second row contains the three two-way

interactions, and the third row contains the triple interaction. This model allows for the

probability of a protest in city i to be larger in connected cities (β1) than in nonconnected

cities, for example, because of correlated effects (absorbing fiδg) in the post-Weibo period

(β3), and additionally higher for connected cities in the post-Weibo period (β5). Protests are

also allowed to spread across all cities (β2), and differentially so in the post-Weibo period

(β6). In particular, note that protests in city i may be more likely to occur immediately after

a protest in a connected city j in the pre-Weibo period (β4), such as because of contextual

effects (absorbing γfiyjt−1). The coeffi cient β captures the difference in the spread of protests
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between connected and nonconnected cities before and after Weibo entry.

Under the standard OLS assumption, E [εit|fi, yjt−1, Pt] = 0. For compactness, we use

the notation

E [Y |fi = 1, yjt−1 = 1, Pt = 1] = YC,S,Post,

where C denotes a connected city (fi = 1), S denotes lagged protests in city j (yjt−1 = 1)

and Post denotes Pt = 1. Similarly, let N denotes nonconnected city (fi = 0), W denote a

day without a protest in city j, yjt−1 = 0, and Pre denote that Pt = 0. It is straightforward

to show that β = δC − δN , where

δC = (YC,S,Post − YC,W,Post)− (YC,S,Pre − YC,W,Pre)

is the difference in city C between the pre-Weibo and post-Weibo periods in the difference

in protest incidence when there is a protest or not in city j, and

δN = (YN,S,Post − YN,W,Post)− (YN,S,Pre − YN,W,Pre)

is the equivalent difference in city N .

By re-arranging terms, we can also write the estimator as β = δ1 − δ0, where

δ1 = (YC,S,Post − YC,W,Post)− (YN,S,Post − YN,W,Post)

is the difference between connected and nonconnected cities in the difference between days

with and without protests in the post-Weibo period, and

δ0 = (YC,S,Pre − YC,W,Pre)− (YN,S,Pre − YN,W,Pre)

is the equivalent difference in differences in the pre-Weibo period.

A.1.3 Parallel-Trends Assumption

Below, we articulate the identification conditions for the triple-difference estimator we have

derived under the potential outcomes framework.

Let E [Y1|C, S, Post] denote the expected outcome in state (C, S, Post) in the case that
a city is connected and E [Y0|C, S, Post] denote the expected outcome in the counter factual
case in which the city is not connected. The estimate βTT captures the causal effect of

being connected to a city with a protest in the post-Weibo period for the connected cities,

formulated as follows:

βTT = E [Y1|C, S, Post]− E [Y0|C, S, Post] .
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Our estimator is

β = δC − δN
= (E [Y1|C, S, Post]− E [Y0|C,W,Post])− (E [Y0|C, S, Pre]− E [Y0|C,W,Pre])

− (E [Y0|N,S, Post]− E [Y0|N,W,Post])− (E [Y0|N,S, Pre]− E [Y0|N,W,Pre]) .

The condition for β = βTT is that absence treatment, δC = δN . Since the only term that

contains treatment in δC is the first term, E [Y1|C, S, Post] , the parallel-trend condition is

(E [Y0|C, S, Post]− E [Y0|C,W,Post])− (E [Y0|C, S, Pre]− E [Y0|C,W,Pre]) (7)

= (E [Y0|N,S, Post]− E [Y0|N,W,Post])− (E [Y0|N,S, Pre]− E [Y0|N,W,Pre]) .

A.1.4 Contextual and Correlated Effects

Our estimator differences out the contextual and correlated effects in Equations 4 and 5. The

correlated effects, fiδg, are differenced out because both δC and δN are constructed solely

from the within-group differences.

The contextual effects are partialed out because they are contained in both δ1 and δ0,

and δ1−δ0 = (β + γ)−γ = β. The parallel-trends assumption in Equation 7 implies that the

difference-in-differences captured by δ0 would have been the same in the post-Weibo period,

in the counter factual case that the social media network did not exist,

(E [Y0|C, S, Post]− E [Y0|C,W,Post])− (E [Y0|N,S, Post]− E [Y0|N,W,Post]) = γ.

We cannot test the assumptions directly because we do not observe E [Y0|C, S, Post]. How-
ever, we can estimate γ separately for each half-year, b, using

γ̂b =
(
Y C,S,Pre − Y C,N,Pre

)
b
−
(
Y N,S,Pre − Y N,N,Pre

)
b

to see whether this exhibits a trend in the pre-Weibo period.

A.1.5 Multiple cities

In the real-world data that we use, protests occur in all cities, and social media connections in

the post-Weibo period are of different strengths. Let fij be the strength of city i’s connection

to city j. Now, we generalize the above model by linearly adding the contributions described

in Equation 6 from each city j,

yit = β0 + β1f i + β2 (yt−1 − yit−1) + β3Pt
+β4sit−1 + β5f iPt + β6Pt (yt−1 − yit−1)

+βPtsit−1 + εit.
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where f i =
∑
j

f ij , yt−1 =
∑
j

yjt−1, and sit−1 =
∑
j 6=i

fijyjt−1. To allow for more flexibility,

we will estimate an equation of the form

yit = αpyit−1 + β
psit−1 + δ

p
i + δt + εit, (8)

where superscripts indicate the pre-Weibo and post-Weibo periods. The city—by-period fixed

effects absorb the following terms:

δ0i = β0 + β1f i

δ1i = β0 + β1f i + β3Pt + β5f iPt.

The date-fixed effects and the lagged outcome in city i, yit−1, interacted with the period-fixed

effects pt, absorb the following terms:

β2yt−1 + β3Pt + β6Ptyt−1 + (−β2 − β6Pt2) yit−1 = δt + α
0yit−1 + α

1yit−1,

where δt = β2yt−1 + β3Pt + β6Ptyt−1, α
0 = −β2, and α1 = −β2 − β6Pt2. To simplify the

exposition, we omit the term involving the within-city spread, αyit−1, from Equation (4)

when we constructed Equation (6). To include this spread, α should be added to α0 and α1.

Finally, our specification includes sit−1, interacted with period-fixed effects pt. This absorbs

the terms

β4sit−1 + βPtsit−1 = β0sit−1 + β
1sit−1,

where β0 = β4, and β
1 = β4+β. After adding controls, Equation (8) corresponds to Equation

(2) in the main manuscript.

A.2 Monte Carlo Simulations

A.2.1 Stationarity

In our setting, the stationarity of the process of protests or strikes is not simply an econometric

issue. Whether these processes are stable or exploding is likely to be a core concern of an

authoritarian regime (the Chinese central government in our context). Consider the following

simple first-order serial autoregressive process: yt = ρyt−1 + εt.

This process is stationary if |ρ| < 1. If ρ > 1, then, on average, each yt is larger than the
past yt−1, and in expectation, yt grows exponentially over time. We can investigate whether a

process is on such an exploding path by simulating outcomes generated from drawing random

shocks from the distribution of εt, and iteratively computing sequences of yt. Our setting is

more complex than this simple example because of the network structure, multiple time lags,

and discrete outcomes, but the principle remains the same.

In a dynamic spatial panel data model, stationarity depends on the parameters of the
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model as well as on the spatial weight matrix, which determines the amount of autocorrela-

tion, or feedback, in the process. For the location’s own autoregressive term and the distance

weighted term, this feedback is constant over time because α, γ, and the distance matrix D

are constant. However, more intensive use of social media will increase the feedback, and

each individual row in the forwarding matrix, F, does not sum up to one. This implies that

the marginal effect of a change in yt−1 on the probability of an event differs across location

and time. In the linear model, the average effect on a particular date t equals βf t−1, where

f t−1 is the average row sum across locations on that date. The maximum of such a row sum

is 10.5, an order of magnitude larger than the average row sum across all dates, t, which is

normalized to one. This implies that the suffi cient conditions for stationarity are not fulfilled

for the linear model. In other words, stationarity requires a concave function for high values

of sit−1, as we demonstrate below.

In the baseline estimation, we assume that sit−1 enters linearly in Equation (1). Now, we

investigate this assumption using a nonparametric least squares regression (Cattaneo et al.

2022). Specifically, we estimate the nonparametric conditional mean function h(·) using the
following specification:

yit = αyit−1 + h (sit−1) + γdit−1 + θ0wit + θ
′xit + δi + δt + εit. (9)

Figure 5 in the paper plots the nonparametric conditional mean function (shown by

the dots), estimated using the specification in Equation 1, together with three parametric

approximations: a linear approximation, a logarithmic (log(5sit−1+1)) approximation, and a

5-th order polynomial approximation. The conditional mean function is approximately linear

for most of the support, and all three approximation functions yield very similar results for

the estimated average marginal effects.24

However, as shown in Figure 5, when an event wave grows above a certain extent, the

marginal spread effect of an additional event (the slope of the curve) falls. Thus, for suffi -

ciently high values of sit−1, there is no spread of events through social media. This causes the

magnitude of yt to fall rapidly in the right tail. Because of this feature, the process is never

on an exploding path when we use either the 5th-order polynomial or the log approximations

of the conditional mean functions for the data-generating process. Given that the log-model

only has one parameter, and is suffi ciently concave to avoid exploding paths, we use this

functional form in most of the simulations.
24This is evident from results using the logarithmic function in the Appendix Tables A5 and A6, in com-

parison with our baseline results (Tables 1 and 2). The logarithmic model uses the conditional mean function
ln(5sit 1+1). The estimates of β are statistically significant across all specifications and the implied marginal
effects on event probabilities are similar to those estimated using the linear model.
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A.2.2 Nickell Bias

The Nickell bias arises in dynamic panels with fixed effects. In our estimation, we presume

that the Nickell bias is small because the T in our panel model is very large. Nevertheless, we

run a set of Monte Carlo simulations to assess the Nickell bias in the estimated coeffi cients

of our baseline model. We first estimate the parameters α, β, γ, δt and δi from a regression

specified as in Equation 1, using the logarithmic function described above and without Weibo

penetration and controls (for the sake of simplicity). Next, we generate data using the same

model with the estimated parameters, adjusted such that δt + δi ≥ 0. Then, we estimate

the model parameters (α̂, β̂, γ̂) on the simulated data. We repeat this procedure 100 times.

Figure A4 plots the distribution of t-statistics of coeffi cients α, β and γ in Equation (1)

against the standard normal density. The bias is very small, as evident from the negligible

difference between the true and the mean estimated β for both protests and strikes.

In Section 5, we report the estimates of a model including fixed effects for arbitrary time-

constant spread across locations. We also run a set of Monte Carlo simulations to assess

the Nickel bias in this model. Specifically, we use the baseline model for the data-generating

process and then estimate the interaction-fixed-effects model using the simulated data. Figure

A5 depicts the distribution of β-estimates from the Monte Carlo simulations. The graphs

to the left show the results from estimations without interaction-fixed effects (Equation 1),

corresponding to specifications in Columns (1) and (4) of Table 1. The graphs to the right

are based on the regressions with interaction-fixed effects, corresponding to the specifications

used in Columns (3) and (6). The blue line shows the true coeffi cient used in the data-

generating process. The red line represents the mean coeffi cients from the estimated on the

simulated data. These graphs show a bias of 0.011 for both protests and strikes.

We also test for the possibility of auto-correlated errors on the simulated data in which

the autocorrelation in errors is absent by construction. The test for autocorrelation in the

baseline model verifies this, although it slightly over-rejects the non-autocorrelation hypoth-

esis. The model with interaction-fixed effects can control for the same pattern as the baseline

model, but many interaction-fixed effects are imprecisely estimated. Removing slightly in-

correct auto-correlated terms generates auto-correlated errors. Hence, it is not surprising

that the autocorrelation test for the model with interaction-fixed effects incorrectly rejects

no autocorrelation in our data which is simulated with no autocorrelation.

Presumably, autocorrelation would disappear as the sample size grows to infinity, because

the coeffi cients are consistently estimated and would converge to the data generation process.

The lack of autocorrelation in the errors in Table 1 shows that there is no significant spread

of protests other than what is captured in the baseline model. Although the specifications

used in Columns (3) and (6) of Table 1 generate auto-correlated errors in small samples, they

will not severely bias the estimated coeffi cients, as shown in Figure A5.
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A.2.3 Mechanical Zero Effect

The estimated social media effect on event spread is not closely related to the number of

events in each period. For example, there are 50% more protests in period 2 than period 1

(1516 compared with 1,037), but the estimated spread in period 2 is smaller than in period

1. Similarly, while there are six times as many strikes in period 2 than in period 1 (7,857

compared with 1,365), the estimated spread effect is not significantly different. The lack of,

or even a negative, relationship between the number of events and the size of the estimated

effects suggests that there is no mechanical relationship between these two variables.

Concerns may remain that the smaller number of events in the pre-Weibo period would

mechanically reduce the estimated effects. To further explore this, we simulate event data

using a process that matches the observed event frequencies within each period, with the

propagation of protest waves across cities being equally strong in the pre-Weibo and post-

Weibo periods. Then, we estimate the effects on the simulated data and test whether the

coeffi cients in the pre-Weibo period are significantly lower than in the post-Weibo period.

To implement this research design, we first run a set of Monte Carlo simulations to gener-

ate event data for the period from 2010 to 2013. To simulate data with lower event frequency

for the pre-Weibo period (2006-2010), we use the post-Weibo data-generating process, and

then sample sequences starting from a random date and continuing until the same number

of events as in the real data are reached. We retain simulated events ỹit in the sampled

sequences but drop all other events (i.e., yit is set to zero).

Then, we re-estimate the model of Table 2 based on these simulated data. Table A4 shows

the results. Despite the much smaller number of events in the pre-Weibo period, the average

estimated β−coeffi cient is only slightly lower in the pre-Weibo period than in the post-Weibo
period (0.10 compared with 0.12). When we test whether the coeffi cient in the pre-Weibo

period is lower than in the post-Weibo period at the 5% significance level, the hypothesis is

rejected in 8% of the simulations.

A.2.4 Magnitude of Event Waves

In this section, we estimate the effect of social media on the size of an event wave, measured

by the number of essentially simultaneous events across multiple cities. We are not only

interested in the mean number of events but also in the likelihood of very large event waves.

This requires that we specify some additional details about the dynamic process of event

waves.

In addition to the effects through social media, measured by sit−1, the propagation of

protests may depend on the size of event waves in the real world, measured by the number

of essentially simultaneous events, yt−1 =
∑
yit−1. On the same date, yt−1 is constant across

all cities and hence is absorbed by the date fixed effect, δt, in Equation (1). The specification

including date-fixed effects is preferred when the purpose is to identify the marginal effect of

sit−1, because it flexibly controls for all time-constant heterogeneity, including that through
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yt−1. However, this specification does not explicitly model the dynamic effects through yt−1.

Therefore, when the objective is to explore the size of event waves, we need to bring the effect

of yt−1 to the scene. We do so by adding yt−1 to Equation (1) and replacing the date-fixed

effects with fixed effects for running months. More specifically, we use the parameters (α̂, γ̂)

and the 5th-order polynomial ĥ5(sit−1), estimated as described above, which are obtained

from the specification in Equation 1 that includes date fixed effects (because this model most

convincingly identifies these parameters). Then, we estimate the parameters δi, ρ, δm using

the following specification:

yit = α̂yit−1 + ĥ5(sit−1) + γ̂dit−1 + δi + ρyt−1 + δm + εit, (10)

where the date fixed effects, δt, are replaced with date-constant variables: the total number

of events in the past two days, yt−1, and the month-fixed effects, δm. The estimate of

ρ̂ ≈ −0.002 implies that the probability of an event falls by 0.02 for every 10 additional
events that occurred in the past two days.

Then, we use the above model to simulate event data under two scenarios, with and

without social media. In both scenarios, we use the estimated probabilities that events erupt

independently of other events, δ̂i + δ̂m, and we keep the within-city and geographical and

aggregate spread, (α̂, γ̂, ρ̂) at the estimated levels. In one scenario, we allow events to spread

through social media using the estimated nonparametric conditional mean function, ĥ5(sit−1).

In the other scenario, we do not allow for event spread over social media by omitting the

function ĥ5(sit−1) from the data generating process. We simulate the data 1,000 times,

obtaining 1,000 possible histories of protest events in our city panel up to 2013. For each

simulation and year, we compute the maximum number of cities with protests within the

same week and the corresponding maximum share of population in the cities affected by

protests. The results are shown in Figure 6 and discussed in Section 6.3 of the paper.

A.3 Censorship

Censorship and aggregate retweets In 2015, we checked which posts in a subsample of

posts in our dataset remained online. Based on this deletion rate at the regional level, we

construct a measure of local censoring intensity. Given the literature on censorship in China,

it seems unlikely that censorship significantly affects the number of retweets on nonsensitive

topics. We verify this by regressing our time-constant measure of social media connections,

fij , on the average share of deleted posts in city i and city j. All of the variables are

standardized, and standard errors are clustered by city i and city j. Table A9 reports the

results. It is clear that fij is not significantly related to the share of deleted posts in either

the city of the tweeting user (j) or the city of the retweeting user (i). Column (2) adds city-

level controls and Weibo penetration in 2012. The coeffi cients of interest are non-significant,

and the implied magnitudes are small. Column (3) interacts the share of deleted posts with
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Weibo penetration, because the effect on total retweets should be increasing in Weibo use.

The coeffi cient of this interaction term is small and statistically insignificant.

Heterogeneity analysis We further investigate whether the spread of protests and strikes

is correlated with our measure of local censorship intensity. First, censorship may affect

outgoing messages from the city of event occurrence. Suppose that the event yjt−1 in city j

at time t−1 causes a burst of tweets, a share of which, cj , are censored. To capture this type
of effect, we construct the variable

∑
i6=j fijcjyjt−1 where cj is the measure of the average

share of deleted posts in city j. However, the variables
∑
i6=j fijcjyjt−1 and

∑
i6=j fijyjt−1

are highly collinear, making it impossible to separately identify the effects from these two

variables. Such multicollinearity arises because many events occur in cities with deletion rates

close to the mean deletion rates, and thus the variance in the weights cj is small, making the

two variables highly correlated.

Second, we consider the situation in which censorship may prevent social media users

in affected cities (to which the events could spread) from reading or retweeting incoming

event-related tweets from other cities. We capture this by using the variable ci
∑
i6=j fijyjt−1

where ci is the share of deleted posts in city i. As shown in Table A10, neither the spread

of protests nor the spread of strikes is significantly different in cities with different levels of

censorship.

A.3.1 Censorship, Content Exposure, and Conclusions about Mechanisms

Because of censorship, the visibility to Weibo users of tweets with a certain content may

differ from the availability of these tweets in our dataset.

Consider two types of content referencing protests, labelled A and B. Type-A content

reveals logistics information (e.g., where and when to meet), which lowers the cost of protest-

ing. Type-B content just talks about the occurrence of a protest or expresses sentiment,

which supports other mechanisms. The Chinese government censors Type-A content but not

Type-B content. Given that data downloading is slower than user reading of tweets, users

may read Type-A tweets that are censored before we download them. Hence, the ratio in

the downloaded tweets may be a biased measure of the ratio of reader exposure (the share of

tweets read by users). Below, we provide a simple formulation to assess this potential bias.

Suppose that there are N Type-A tweets. Among these tweets, let α be the share of

those that contain sensitive keywords, which are therefore automatically held in quarantine.

A share s of these pass the censorship test and are later published; these published tweets are

downloaded by us and also visible to users. The remaining tweets, which amount for a share

of 1−α, do not contain sensitive keywords, and are directly published but later reviewed and
perhaps censored. We download a share δ of these tweets. Suppose that uA users would read

these tweets if they were never censored, and that on average a share r of these users read

the tweets before they are censored. Thus, we define a measure of user exposure to Type-A
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content, eA, to be:

eA = NuA (αs+ (1− α) r) .

The number of tweets that we download is

dA = N (αs+ (1− α) δ) .

Hence, the ratio of user exposure to downloaded tweets is

eA
dA

= uA
αs+ (1− α) r
αs+ (1− α) δ .

The equivalent ratio for Type-B content, which is not censored, is uB, because, in this case,

α = 0 and r = δ = 1. The relative ratios of user exposure to the number of downloaded

tweets for Type-A content and Type-B content depend on the difference between r and δ as

well as the discrepancy between uA and uB.

Empirical estimates To gauge the discrepancy between reader exposure and data down-

loading (r and δ), we need to know the share of interested users who read the tweets before

they are censored, and the share of tweets that are downloaded before censoring. This re-

quires estimates of the speed of (i) censoring, (ii) user reading, and (iii) our downloading

of tweets. Let F̂c (t) be the empirical distribution of censoring time as measured by Zhu et

al. (2010), who provide an accurate measure of the speed of censorship in minutes after a

tweet is posted. Let F̂r (t) be the empirical distribution of retweet time in our data, which

serves as a proxy for the speed of reading tweets. Finally, we assume that the downloading

time, F̂d (t), is uniformly distributed between 0 and 24 hours. This assumption is reasonable

because most of our data are downloaded by lining up users over a 24-hour time window and

the posts of each of these users are downloaded at a daily frequency.

The empirical distributions of censoring and retweet speed are plotted in Figure A2. This

figure includes two distributions of retweet speed for (i) all retweets and (ii) retweets of

posts referencing protest and strike within two days after a real world event. In the first

10 minutes after a tweet is posted, retweeting (especially for the protest or strike events) is

faster than censoring. After this time, the speed of censoring is considerably higher than that

of retweeting. Protest and strike tweets are retweeted more quickly than the average tweet.

This could be because users are more active in responding to politically sensitive content or

because censorship disables the retweeting of sensitive posts after a certain time. For the

latter reason, rather than using protest and strikes tweets, we use the retweet distribution

based on all tweets, for which the share of censored posts is very small, to calculate the

probabilities below.

We simulate data to generate samples of 1,000 tweets. For each simulation, we draw

independent realizations of the censoring time (c) from the empirical distribution F̂c (t), the
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download time (d) from F̂d (t), and 10 realizations of retweet time (r) from F̂r (t).25 The

simulated probability of downloading a tweet that is later censored is 0.23, which implies

that approximately 77% of the posts that are eventually censored are censored before they

are downloaded. Our simulation show that around one third of the users who would read a

tweet have done so by the time of censorship.

To gauge the ratio of r to δ, suppose that there are 100 Type-A tweets susceptible to

censorship and 100 uncensored Type-B content. Each tweet would be read by 10 users if

censorship did not occur. In this case the Type-B tweets are read 1000 times and the Type-A

tweets are read 330 times. We download 100 of the Type-B tweets and 23 of the type A

tweets. Hence, the ratio of downloaded Type-A tweets relative to Type-B tweets is 23/100,

and the corresponding ratio of user exposure to tweets is 330/1000.

According to our previous formulation, if no posts in category A contain sensitive keywords

and are automatically held for review (α = 0), then we would underestimate the prevalence

of censored Type-A tweets relative to uncensored Type-B tweets by around 30% (1-23/33).

In practice, we expect that a significant share of Type-A tweets contain logistic information

which typically includes sensitive keywords, and thus the bias is smaller than when α = 0.

The other issue is that the number of interested users may differ across content types

(uA 6= uB). To capture this difference, we compare the numbers of retweets of Type-A and

Type-B content, because the average number of retweets per tweet tends to increase in the

number of users who read the tweet.
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Table A1. Summary statistics of the main variables 

Protest Strike 

mean sd min max mean sd min max 

Event dummy 0.002 0.039 0 1 0.002 0.045 0 1 

#events 1-2 days prior  
(retweet weighted) 

0.016 0.04 0 0.69 0.02 0.043 0 0.675 

#events 1-2 days prior 0.003 0.056 0 2 0.004 0.065 0 2 

#events 1-2 days prior  
(distance weighted) 

0.003 0.007 0 0.145 0.004 0.008 0 0.233 

Total # retweets by users in 
focal city in the last 182 days 

1.026 1.019 0 3.495 1.021 0.948 0 3.303 

log (#posts per capita +1) 0.06 0.185 0 2.646 0.059 0.18 0 2.646 

log(Population) 5.965 0.635 3.767 8.119 5.874 0.684 2.871 8.119 

log(GDP) 15.147 1.204 11.989 19.179 15.093 1.184 12.031 19.179 

log(Agriculture share of GDP) 1.484 1.068 -3.219 4.078 1.455 1.076 -3.219 4.071 

log(Industrial share of GDP) 3.898 0.264 2.123 4.504 3.903 0.277 2.161 4.504 

log(Tertiary share of GDP) 3.703 0.266 2.153 4.454 3.693 0.276 2.153 4.454 

log(#Cellphone users, 10,000) 5.422 0.846 2.509 8.124 5.362 0.851 2.786 8.124 

#cities 248 282 

#observations 670996 713702 

Table A2. Between-city mobility of college students and social media connections 

(1) 

VARIABLES 𝑓𝑖𝑗 

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠𝑖𝑗
0509

0.083*** 
(0.013) 

Inverse geographical 39.722*** 
distance (4.223) 

Observations 86,308 
R-squared 0.938 
Fixed effects Prov pair + city-prov pair 

Notes: The dependent variable is log(1+# of retweets from city i of tweets from city j). 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠𝑖𝑗
0509 is

log(1+mean # students from city i who move to city j in 2005 or in 2009). The regression includes origin 

and destination city fixed effects, as well as fixed effects for province pairs and destination city-province 

pairs. Standard errors are clustered by origin city and destination city. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A3. Student-mobility IV: First stage   

Protest Strike 
VARIABLES �̅�𝑖𝑡−1 �̅�𝑖𝑡−1 

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠𝑖𝑗
0509 x period 0 1.196*** 1.249*** 

(0.081) (0.078) 

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠𝑖𝑗
0509 x period 1 1.414*** 1.422*** 

(0.078) (0.073) 

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠𝑖𝑗
0509 x period 2 1.246*** 1.494*** 

(0.075) (0.081) 

Observations 999,472 1,092,477 
R-squared 0.980 0.985 

Notes: The dependent variable is �̅�𝑖𝑡−1 , the lagged events in other cities, weighted by social media

connections. The unit of observation is city by date. The regression includes lagged events, 𝑦𝑖𝑡−1 , and

distance-weighted lagged events, 𝑑𝑖𝑡−1 , interacted with period fixed effects, city-by-period, and date fixed

effects. Controls include population, GDP, shares of the industrial and tertiary sectors in GDP, and the 

number of cell-phone users. Standard errors are two-way clustered by date and city. *** p<0.01, ** p<0.05, 

* p<0.1.

Table A4. Testing for mechanical zero effects at low event frequency 

VARIABLES mean 

𝛽0 0.106 

𝛽1 0.121 

sd(𝛽0) 0.038 

sd(𝛽1) 0.021 

Tests of 𝛽1 >𝛽0  at 5% significance 0.089 

Notes: Data was generated so that the simulated event frequencies equal observed event frequencies for the 

pre-Weibo and post-Weibo periods, while the DGP-beta is the same for both periods. The model of Table 2 

is then estimated on the simulated data.  
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Table A5. Time-varying measure of connections (log model) 

(1) (2) (3) (4) (5) (6) 
VARIABLES Protest Protest Protest Strike Strike Strike 
Social-media spread (𝛽) 0.055*** 0.054*** 0.047*** 0.039*** 0.037*** 0.024*** 

(0.013) (0.012) (0.013) (0.008) (0.007) (0.008) 
Geo-distance spread (𝛾) -0.008 -0.007 0.031** 0.030** 

(0.008) (0.008) (0.013) (0.012) 
Number events 1-2 days 
prior

0.009** 0.009** 0.000 0.017*** 0.017*** 0.000 
(0.004) (0.004) (0.000) (0.004) (0.004) (0.000) 

Total number retweets 0.000 -0.000 0.000 -0.001 -0.001 -0.001 
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

Weibo posts 0.006*** 0.006*** 0.005** 0.011*** 0.010*** 0.009*** 
(0.002) (0.002) (0.002) (0.004) (0.003) (0.003) 

Observations 670,996 670,996 670,996 713,702 713,702 713,702 
R-squared 0.016 0.016 0.219 0.027 0.027 0.239 
Controls No Yes Yes No Yes Yes 
QPtest 0.07 0.15 0.27 0.32 

Notes: Results are from a linear regression of an event dummy. The unit of observation is city by date. 

The estimated model is  

𝑦𝑖𝑡 = 𝛼ℎ(𝑦𝑖𝑡−1) + 𝛽ℎ(𝑠𝑖𝑡−1) + 𝛾ℎ(𝑑𝑖𝑡−1) + 𝛽0𝑤𝑖𝑡 + 𝜃′𝑥𝑖𝑡 + 𝛼𝑖𝑝 + 𝛿𝑡 + 𝜀𝑖𝑡

where ℎ(𝑥) = ln (5𝑥 + 1).  Controls are population, GDP, shares of the industrial and tertiary sectors in 

GDP, and the number of cell phone users. Columns (3) and (6) allow for arbitrary time-invariant 

heterogeneity in the spread across city pairs. The QP statistic reports the p-value of the test for serial 

correlation in the fixed-effects model. Standard errors are two-way clustered by date and city. *** p<0.01, 

** p<0.05, * p<0.1. 
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Table A6. Time-constant measure of connections (log model) 

(1) (2) (3) (4) 
VARIABLES Protest Protest Strike Strike 
Social-media spread, 

𝑠𝑖𝑡−1

𝛽0 0.036** 0.033* 0.023 0.028 
(0.018) (0.020) (0.039) (0.043) 

𝛽1 0.214*** 0.246*** 0.178*** 0.190*** 
(0.055) (0.058) (0.042) (0.046) 

𝛽2 0.100*** 0.109*** 0.237*** 0.249*** 
(0.027) (0.028) (0.032) (0.035) 

Geo-distance spread, 

𝑑𝑖𝑡−1

𝛾0 -0.003 -0.010 0.113* 0.114* 
(0.018) (0.018) (0.066) (0.067) 

𝛾1 -0.028 -0.026 0.116** 0.113* 
(0.038) (0.038) (0.059) (0.061) 

𝛾2 0.026 0.024 0.030 0.031 
(0.026) (0.027) (0.035) (0.034) 

Observations 1,140,224 1,028,085 1,224,880 1,119,858 
R-squared 0.018 0.019 0.048 0.049 
Controls No Yes No Yes 
P-value: 𝛽1 = 𝛽0 0.002 0.001 0.006 0.008 
P-value: 𝛽2 = 𝛽0 0.048 0.032 0.000 0.000 

Notes: Results are from a linear regression on an event dummy variable. The unit of observation is city by 

date. The estimated model is  

𝑦𝑖𝑡 = 𝛼𝑝ℎ(𝑦𝑖𝑡−1) + 𝛽𝑝ℎ(�̅�𝑖𝑡−1) + 𝛾𝑝ℎ(𝑑𝑖𝑡−1) + 𝛽0𝑤𝑖𝑡 + 𝜃′𝑥𝑖𝑡 + 𝛼𝑖𝑝 + 𝛿𝑡 + 𝜀𝑖𝑡

where ℎ(𝑥) = ln (5𝑥 + 1). Controls include population, GDP, shares of the industrial and tertiary sectors 

in GDP, and the number of cell-phone users.  Standard errors are two-way clustered by date and city. *** 

p<0.01, ** p<0.05, * p<0.1.  
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Table A7. Event spread across cities: probit model 

(1) (2) (3) (4) 
VARIABLES Protest Protest Strike Strike 
Social-media spread (𝛽) 0.618** 0.568** 0.558*** 0.572*** 

(0.271) (0.254) (0.179) (0.181) 
Geo-distance spread (𝛾) 1.727 1.927 2.129*** 2.103*** 

(1.433) (1.392) (0.643) (0.653) 
Number events 1-2 days prior 0.178** 0.168** 0.317*** 0.319*** 

(0.079) (0.077) (0.049) (0.048) 
Total number retweets -0.032 -0.042 0.194*** 0.203*** 

(0.046) (0.044) (0.036) (0.036) 
Weibo posts 0.238*** 0.232*** -0.009 -0.008 

(0.058) (0.060) (0.034) (0.038) 

Observations 564,378 564,378 581,509 581,509 
Controls No Yes No Yes 

Notes: Results are from a probit regression on an event dummy. The unit of observation is city by date. The 

regression includes city-fixed effects and a quadratic function of the time trend in date. Controls include 

population, GDP, shares of the industrial and tertiary sectors in GDP, and the number of cell-phone users. 

Standard errors are two-way clustered by date and city. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A8a. Three-period analysis of protests, additional controls 

(1) (2) (3) (4) (5) (6) (7) 

VARIABLES Protest Protest Protest Protest Protest Protest Protest 

Social-media spread, 𝑠𝑖𝑡−1 𝛽0 0.043** 0.029* 0.033* 0.033** 0.031* 0.028 0.044** 

(0.021) (0.018) (0.019) (0.016) (0.017) (0.018) (0.020) 

𝛽1 0.204*** 0.168*** 0.204*** 0.179*** 0.175**

*

0.173*** 0.189*** 

(0.061) (0.045) (0.056) (0.046) (0.045) (0.045) (0.065) 

𝛽2 0.068** 0.086*** 0.090*** 0.083*** 0.085**

*

0.086*** 0.082*** 

(0.028) (0.022) (0.024) (0.021) (0.021) (0.022) (0.026) 

Geo-distance spread, 𝑑𝑖𝑡−1 𝛾0 -0.014 -0.012 -0.013 -0.015 -0.011 -0.012 -0.014 

(0.018) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) 

𝛾1 -0.034 -0.024 -0.033 -0.030 -0.019 -0.026 -0.027 

(0.037) (0.035) (0.037) (0.037) (0.034) (0.036) (0.038) 

𝛾2 0.024 0.020 0.019 0.020 0.022 0.019 0.021 

(0.025) (0.024) (0.024) (0.024) (0.023) (0.024) (0.024) 

Observations 1,022,162 1,022,162 1,022,162 1,022,162 1,022,1

62

1,022,162 1,022,162 

R-squared 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

Interacted controls 
All 

Populatio

n GDP 

Agricultu

re share 

Industri

al share 

Tertiary 

Share 

Cell-

phone 

P-value: 𝛽1 = 𝛽0 0.016 0.004 0.004 0.003 0.003 0.003 0.034 

P-value: 𝛽2 = 𝛽0 0.544 0.059 0.089 0.096 0.074 0.059 0.302 

Notes: Results are from a linear regression on an event dummy variable. The unit of observation is city by date. 

The regression includes lagged events, 𝑦𝑖𝑡−1 interacted with period-fixed effect, city-by-period and date fixed

effects. Default controls include population, GDP, shares of the industrial and tertiary sectors in GDP, and the 

number of cell phone users. Interacted controls are constructed as ∑ 𝑤𝑖𝑤𝑗𝑦𝑗𝑡−1𝑗 , where the weights 𝑤𝑖  are

population, GDP, etc., for city i. Standard errors are two-way clustered by date and city. *** p<0.01, ** p<0.05, 

* p<0.1.
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Table A8b. Three-period analysis of strikes, additional controls 

(1) (2) (3) (4) (5) (6) (7) 

VARIABLES Strike Strike Strike Strike Strike Strike Strike 

Social-media spread, 𝑠𝑖𝑡−1 𝛽0 -0.025 0.034 0.027 0.025 0.031 0.028 0.023 

(0.038) (0.039) (0.036) (0.032) (0.033) (0.033) (0.035) 

𝛽1 0.023 0.151*** 0.129*** 0.126*** 0.135*** 0.133*** 0.092*** 

(0.038) (0.035) (0.030) (0.026) (0.029) (0.029) (0.031) 

𝛽2 0.074*** 0.109*** 0.133*** 0.125*** 0.124*** 0.125*** 0.087*** 

(0.026) (0.017) (0.022) (0.017) (0.017) (0.017) (0.021) 

Geo-distance spread, 𝑑𝑖𝑡−1 𝛾0 0.117 0.100 0.102 0.104 0.102 0.102 0.103 

(0.071) (0.064) (0.066) (0.066) (0.065) (0.065) (0.066) 

𝛾1 0.112** 0.093* 0.100* 0.102* 0.100* 0.098* 0.106* 

(0.052) (0.051) (0.054) (0.056) (0.054) (0.054) (0.055) 

𝛾2 0.050 0.043 0.048 0.047 0.054* 0.047 0.048 

(0.032) (0.032) (0.031) (0.031) (0.031) (0.031) (0.031) 

Observations 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 

R-squared 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

Interacted controls 
All Population GDP 

Agriculture 

share 

Industrial 

share 

Tertiary 

Share 

Cell-

phone 

P-value: 𝛽1 = 𝛽0 0.263 0.025 0.022 0.005 0.010 0.011 0.113 

P-value: 𝛽2 = 𝛽0 0.020 0.055 0.002 0.001 0.004 0.002 0.091 

Notes: Results are from a linear regression on an event dummy variable. The unit of observation is city by date. 

The regression includes lagged events, 𝑦𝑖𝑡−1 interacted with period-fixed effect, city-by-period and date fixed

effects. Default controls include population, GDP, shares of the industrial and tertiary sectors in GDP, and the 

number of cell-phone users. Interacted controls are constructed as ∑ 𝑤𝑖𝑤𝑗𝑦𝑗𝑡−1𝑗 , where the weights 𝑤𝑖  are

population, GDP, etc., for city i. Standard errors are two-way clustered by date and city. *** p<0.01, ** p<0.05, 

* p<0.1.
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Table A8c. Three-period analysis of protests, additional controls (log model) 

(1) (2) (3) (4) (5) (6) (7) 

VARIABLES Protest Protest Protest Protest Protest Protest Protest 

Social-media spread, 𝑠𝑖𝑡−1 𝛽0 0.045* 0.036* 0.036* 0.035* 0.036* 0.036* 0.037* 

(0.024) (0.020) (0.020) (0.019) (0.020) (0.020) (0.020) 

𝛽1 0.268*** 0.244*** 0.244*** 0.249*** 0.245*** 0.244*** 0.245*** 

(0.069) (0.057) (0.057) (0.060) (0.057) (0.057) (0.057) 

𝛽2 0.109*** 0.107*** 0.107*** 0.102*** 0.107*** 0.107*** 0.108*** 

(0.030) (0.028) (0.028) (0.027) (0.028) (0.028) (0.028) 

Geo-distance spread, 𝑑𝑖𝑡−1 𝛾0 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018) 

𝛾1 -0.034 -0.029 -0.029 -0.031 -0.029 -0.029 -0.030 

(0.039) (0.037) (0.037) (0.038) (0.038) (0.037) (0.037) 

𝛾2 0.023 0.023 0.023 0.025 0.023 0.023 0.023 

(0.026) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) 

Observations 1,022,162 1,022,162 1,022,162 1,022,162 1,022,162 1,022,162 1,022,162 

R-squared 0.019 0.019 0.019 0.019 0.019 0.019 0.019 

Interacted controls 
All Population GDP 

Agriculture 

share 

Industrial 

share 

Tertiary 

Share 

Cell-

phone 

P-value: 𝛽1 = 𝛽0 0.003 0.001 0.001 0.001 0.001 0.001 0.001 

P-value: 𝛽2 = 𝛽0 0.157 0.051 0.051 0.059 0.052 0.051 0.055 

Notes: Results are from a linear regression on an event dummy variable. The unit of observation is city by date. 

The regression includes lagged events, 𝑦𝑖𝑡−1 interacted with period-fixed effect, city-by-period and date fixed

effects. Default controls include population, GDP, shares of the industrial and tertiary sectors in GDP, and the 

number of cell-phone users. Interacted controls are constructed as ∑ 𝑤𝑖𝑤𝑗𝑦𝑗𝑡−1𝑗 , where the weights 𝑤𝑖  are

population, GDP, etc., for city i. Standard errors are two-way clustered by date and city. *** p<0.01, ** p<0.05, 

* p<0.1.
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Table A8d. Three-period analysis of strikes, additional controls (log model) 

(1) (2) (3) (4) (5) (6) (7) 

VARIABLES Strike Strike Strike Strike Strike Strike Strike 

Social-media spread, 𝑠𝑖𝑡−1 𝛽0 -0.017 0.019 0.018 0.026 0.020 0.019 0.015 

(0.058) (0.045) (0.044) (0.039) (0.044) (0.044) (0.045) 

𝛽1 0.167*** 0.183*** 0.182*** 0.179*** 0.183*** 0.181*** 0.181*** 

(0.041) (0.042) (0.042) (0.041) (0.042) (0.042) (0.042) 

𝛽2 0.258*** 0.248*** 0.248*** 0.247*** 0.249*** 0.249*** 0.249*** 

(0.036) (0.035) (0.034) (0.034) (0.035) (0.035) (0.035) 

Geo-distance spread, 𝑑𝑖𝑡−1 𝛾0 0.120 0.112* 0.112* 0.110 0.111 0.112* 0.113* 

(0.074) (0.068) (0.068) (0.068) (0.067) (0.068) (0.068) 

𝛾1 0.110* 0.106* 0.106* 0.107* 0.105* 0.106* 0.106* 

(0.058) (0.057) (0.057) (0.058) (0.057) (0.057) (0.057) 

𝛾2 0.030 0.031 0.031 0.032 0.031 0.031 0.031 

(0.035) (0.034) (0.034) (0.034) (0.034) (0.034) (0.034) 

Observations 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 

R-squared 0.049 0.049 0.049 0.049 0.049 0.049 0.049 

Interacted controls 
All Population GDP 

Agriculture 

share 

Industrial 

share 

Tertiary 

Share 

Cell-

phone 

P-value: 𝛽1 = 𝛽0 0.007 0.006 0.005 0.002 0.005 0.006 0.006 

P-value: 𝛽2 = 𝛽0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Notes: Results are from a linear regression on an event dummy variable. The unit of observation is city by date. 

The regression includes lagged events, 𝑦𝑖𝑡−1 interacted with period-fixed effect, city-by-period and date fixed

effects. Default controls include population, GDP, shares of the industrial and tertiary sectors in GDP, and the 

number of cell-phone users. Interacted controls are constructed as ∑ 𝑤𝑖𝑤𝑗𝑦𝑗𝑡−1𝑗 , where the weights 𝑤𝑖  are

population, GDP, etc., for city i. Standard errors are two-way clustered by date and city. *** p<0.01, ** p<0.05, 

* p<0.1.
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Table A9. Correlation between retweeting and censoring intensity 

(1) (2) (3) 
VARIABLES fij fij fij 

Share deleted i 0.026 0.032 
(0.030) (0.035) 

Share deleted j -0.000 -0.002 
(0.016) (0.018) 

Share deleted i x Weibo 
penetration i 0.209 

(0.210) 
Share deleted j x Weibo 
penetration j -0.116 

(0.100) 

Observations 99,048 73,015 73,015 
R-squared 0.750 0.803 0.803 
City controls No Yes Yes 

Notes: Results are from a linear regression of fij on the share of deleted Weibo posts in a city. All variables 

are standardized. The unit of observation is city i by city j. Controls include population, GDP, shares of the 

industrial and tertiary sectors in GDP, and the number of cell-phone users. Standard errors, clustered by city 

i and city j, in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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 Table A10. Time-varying measure of connections interacted with censoring intensity 

(1) (2) (3) (4) 

VARIABLES Protest Protest Strike Strike 

Social-media spread (𝛽) 0.163*** 0.162*** 0.120*** 0.116*** 

(0.049) (0.049) (0.025) (0.024) 

Social-media spread (𝛽) x share deleted posts 0.024 0.026 0.009 0.015 

(0.044) (0.044) (0.026) (0.029) 

Geo-distance spread (𝛾) -0.031 -0.031 0.142** 0.137** 

(0.036) (0.036) (0.058) (0.054) 

Number events 1-2 days prior 0.015** 0.015** 0.030*** 0.030*** 

(0.007) (0.007) (0.007) (0.006) 

Total number retweets 0.002*** 0.002*** 0.002** 0.002 

(0.001) (0.001) (0.001) (0.001) 

Weibo posts 0.006*** 0.006*** 0.010*** 0.009*** 

(0.002) (0.002) (0.004) (0.003) 

Observations 670,996 670,996 713,702 713,702 

R-squared 0.017 0.017 0.027 0.027 

Controls No Yes No Yes 

Notes: Results are from a linear regression of an event dummy. The unit of observation is city by date. The 

regression includes city-by-period and date fixed effects. Controls include population, GDP, shares of the 

industrial and tertiary sectors in GDP, and the number of cell-phone users. Standard errors are two-way 

clustered by date and city. *** p<0.01, ** p<0.05, * p<0.1. 
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Figure A1. Distribution of events across cities 

Notes: The x-axis indicates the accumulated number of events within each city, and the y-axis indicates 

the frequency of cities. The sample period for protests is from 2006 to 2017 and that for strikes is from 

2007 to 2017.  

Figure A2. Speed of retweeting and censorship of posts about protests and strikes 
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Figure A3.  Media control in China during 2000-2020. 

Notes: “Media Bias” is a measure of pro-government bias of Chinese newspapers based on the method 

used in Qin et al. (2018). The Freedom House Index is the aggregate score of freedom of expression and 

media freedom constructed by the Freedom House.  

Figure A4. Monte Carlo simulations DGP, distribution of t-statistics 

Notes: The graphs plot the distribution of t-statistics of coefficients of interest against the standard normal 

density. The red vertical line denotes the mean of the standardized t statistics.  𝛼 , 𝛽, 𝛾 are coefficients of 

the three variables in equation (1): lagged event dummy in city i (𝑦𝑖𝑡−1), the time-varying diffusion of

information on protests through social media (𝑠𝑖𝑡−1), the spread to geographically close cities (𝑑𝑖𝑡−1).
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Figure A5. Monte Carlo simulations of the fixed-effect model 

Notes: The graphs plot the distribution of 𝛽 estimates. The blue line indicates the coefficient of the DGP. 

The red line indicates the mean estimated coefficient using the simulated data. 

Figure A6. Student-IV dynamic effects 

Notes: The graphs plot the estimated biannual coefficients on the time-constant measure �̅�𝑖𝑡−1

(Instrumented by the student-mobility variable 𝑧𝑖𝑡−1) relative to the pre-period mean. The bars indicate the

95% confidence interval. 
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Figure A7. Monte Carlo simulations with observability driven by Weibo and no network spread 

effect 

Notes: The blue line is at the beta-coefficient of the DGP. The red line is at the mean estimated coefficient 

using the simulated data. 

Figure A8. Local censoring intensity across provinces 

Notes: The left graph plots the correlation between our measure of censoring intensity (the share of 

deleted posts) and the measure of the share of deleted posts by Bamman et al. (2012). The right graph 

plots a similar correlation with the x-variable replaced with a measure of pro-government media bias 

based on Qin et al. (2018).   


