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Abstract
Artificial intelligence (AI) has transformed the quality control process with AI
inspection technology, which reduces the need for costly physical resources and
mitigates retail returns. Despite its revolutionizing impact on supply chain quality
management, there is a notable gap in research on the implications of a manufacturer’s
adoption of AI inspection. This article addresses this gap by presenting a two-stage
model that explores the consequences of AI inspection adoption for a downstream
manufacturer and an upstream supplier. Our results show that higher AI-based
inspection accuracy may not always benefit the manufacturer. This is because when
the supplier’s traditional inspection accuracy falls within an immediate range, the man-
ufacturer’s incentive to improve AI inspection accuracy diminishes, and the positive
effect of AI inspection on retail returns cannot fully offset the technology expense.
Moreover, our study explores the dynamics of technology-sharing strategies between
the manufacturer and supplier. Despite potential revenue gains, the manufacturer may
hesitate to share technology due to the risk of increased defective products with lower
AI inspection accuracy, leading to a paradox where profitability coexists with losses.
Surprisingly, the successful collaborative technology-sharing strategy may paradoxi-
cally lead to reduced technology investment. This occurs because technology-sharing
enables significant marginal cost savings in retail returns, rendering the manufacturer
to achieve a comparable inspection level with lower investment. Overall, this research
highlights that adopting AI inspection does not guarantee benefits for the supply chain
members and can sometimes be detrimental. Our study offers strategic guidance for
decision-makers in supply chain quality management.

K E Y W O R D S
AI inspection, inspection modes, quality management, retail returns, supply chain management, technology-
sharing

1 INTRODUCTION

Artificial intelligence (AI) has empowered manufacturers
with the ability to significantly enhance their supply chain
management, establishing itself as a pivotal industry trend.
Bluewave Consulting predicts that by 2028, the global mar-
ket for AI in the supply chain industry will reach more
than $20 billion (BusinessDIT, 2023). In particular, the adop-
tion of AI in quality management is expected to reach a
value of $1084 million by 2031 (Business Research Insights,
2023). Using AI, supply chain stakeholders can enhance pro-
cess monitoring and improve quality control coordination,
ultimately benefiting retail operations (Choi et al., 2022).

McKinsey estimates that AI-enhanced supply chain quality
management can cut defects by up to 50% and boost on-time
delivery by up to 20% (Bauer et al., 2017). Leading com-
panies, including Hewlett Packard Enterprises (HPE) (HPE,
2023), Toyota (Reuters, 2020), and Lenovo (Instrumental,
2023), have adopted AI technology to enhance quality in their
supply chains.

Quality management in supply chains is critical for ensur-
ing product reliability and preventing returns during retail
(Bondareva & Pinker, 2019). As leaders in the supply chain,
manufacturers can work with suppliers to set strict qual-
ity standards, including regular inspections, to spot quality
issues throughout the supply chain (Hwang et al., 2006).
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2 AI INSPECTION IN SUPPLY CHAIN

Traditionally, these quality inspections are performed man-
ually or visually, requiring physical resources. However,
manufacturers now have the option to use AI technology
for real-time, intelligent decision-making on product quality,
known as AI inspection. Some manufacturers go further, shar-
ing AI inspection technology with suppliers to boost quality
improvements across the supply chain. Despite its growing
adoption, limited research exists on the impacts of AI on
supply chain quality management, and this need for more
attention to AI inspection strategies motivates our research
toward helping firms coordinate quality improvement. Our
research aims to address the following questions: How does
AI influence quality management in supply chains, and how
should manufacturers and suppliers adjust to AI for joint
quality improvement?

1.1 Motivation

Product quality issues can lead to significant retail returns,
damaging the brand reputation and increasing operation costs
(Dong et al., 2021). The American Society for Quality has
found that operation costs related to quality can take up to
40% of a company’s revenue (Cavanaugh, 2023). In response,
businesses increasingly focus on preventing quality issues
and boosting the efficiency of retail operations. This has
resulted in the global quality inspection market growing
at an annual rate of over 7% (GrandViewResearch, 2021).
Specifically, in the aerospace industry, investing $1 in qual-
ity inspection can prevent $1000 in retail return costs (Jonble,
2023). This highlights the critical role of quality inspection in
avoiding retail returns and protecting corporate profits.

Advancements in technology are leading top companies
to adopt AI for quality inspection. By integrating indus-
try cameras and intelligent systems, companies leverage AI
to automate the inspection process and intelligently detect
defects (Bauer et al., 2017). As is illustrated in Figure 1,
an industry camera captures images of products on the
inspection line. The AI system then analyzes these images,
compares them to quality standards, and identifies defects
in real time. This process allows for the automatic approval
of good products and the rejection of faulty ones. With
less need for human oversight, AI inspection technolo-
gies ensure consistent inspection quality across different
locations, encouraging their broad implementation.

AI inspection is increasingly used in supply chain quality
management due to its effectiveness. For instance, HPE
saw a 25% drop in server defects by incorporating AI to
detect problems early in the supply chain (HPE, 2023).
Despite its proven successes and potential, however, over
two-thirds of original equipment manufacturers stick with
traditional inspection methods (Cavanaugh, 2023), mainly
manual inspection (Federal Aviation Administration, 2023).
These facts point to the key strategic decisions faced by
manufacturers regarding whether to integrate AI into their
quality control operations. One approach is to implement AI
inspection exclusively within their own inspection processes.

For instance, GE has adopted this strategy, identifying 150%
more defects than human inspectors and thus enhancing
product quality before retail distribution (Bjerregaard, 2023).
Alternatively, manufacturers also have the option to grant
their upstream suppliers access to AI inspection technol-
ogy. This approach, adopted by Lenovo, involves sharing
AI inspection tools with suppliers, which intercepts 4%
of defects earlier in the supply chain and saves rework
costs related to defects by 60%, leading to superior supply
chain quality management (Instrumental, 2023). Both AI
inspection strategies contribute to quality management, but
many manufacturers hesitate to adopt AI inspection (Google
Cloud, 2021).

To understand the reasons behind this hesitation, we con-
ducted interviews with three key executives at an engine
manufacturing company, located in China. During the inter-
view, the Retail Manager emphasized that AI technology
could significantly reduce the high losses of defective prod-
uct returns. Moreover, the Supply Chain Manager pointed
out that quality issues often stem from suppliers’ compo-
nents, which traditional methods fail to catch efficiently, and
underscored the potential for AI to improve quality across
the supply chain. However, the Chief Information Officer
highlighted the substantial investment of AI technology, pre-
senting a practical barrier despite recognizing its benefits
in reducing returns. These insights reveal a challenge that
uncertainties of technology returns remain major barriers to
hindering firms from adopting AI inspection technology and
further deciding on an optimal strategy.

Although previous studies have considered traditional
inspection strategies in quality management, research has
not fully explored manufacturer’s strategies for deploying
AI inspection throughout the supply chain (Zhang et al.,
2022; Zhu et al., 2007). Furthermore, through the interviews,
we realized the need for mathematical modeling in guiding
firms to quantitatively choose inspection strategies, includ-
ing technology investment and collaboration with supplier.
By addressing this question and its related practical impli-
cations for the market, this article aims to provide novel,
actionable insights for firms to optimize their supply chain
quality management processes.

1.2 Contribution and key finding

This article explores the strategic interactions between the
manufacturer and supplier in a two-level supply chain, ana-
lyzing the potential benefits of AI technology under different
inspection strategies. As technology advances, the manu-
facturer can switch from traditional methods to AI-based
inspection, aiming to reduce labor costs and retail returns
caused by defects. Additionally, the manufacturer could
collaborate with the supplier to implement AI inspection, fos-
tering quality improvements across the supply chain. This
cooperative approach seeks to address uncertainties faced by
the supplier and minimize defect-related losses in the retail
market. To the best of our knowledge, it is the first attempt
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PEI ET AL. 3

F I G U R E 1 AI inspection process.

to study the operational strategies of supply chain members
regarding the impacts of AI inspection on the supply chain in
the quality management field.

The adoption of AI inspection has sparked a significant
industry debate. Companies like HPE and Lenovo are at
the forefront, leveraging AI to transform their inspection
routines and enhance the efficiency of retail return (HPE,
2023; Instrumental, 2023). In contrast, entities such as Boe-
ing maintain a cautious stance, preferring traditional methods
over AI for quality inspection (Federal Aviation Adminis-
tration, 2023). Given the divided opinion on adopting AI
inspection for quality management, our research primarily
addresses the question: Should the manufacturer adopt AI
inspection in supply chain quality management, especially
when AI promises greater accuracy and lower costs than tra-
ditional methods? While one might intuit, guided by previous
findings (Li & Li, 2022), a straightforward endorsement of
AI under these conditions, our investigation reveals that the
decision to embrace AI inspection is not as clear-cut as it
may appear.

Our results suggest that even if AI inspection performs
well in enhancing inspection accuracy and reducing inspec-
tion costs, the manufacturer might not always adopt it. The
counter-intuitive result stems from the possible drawbacks of
AI technology, including the high operation costs from retail
returns, which might exceed those of traditional systems.
Companies need to weigh the accuracy of their suppliers’
conventional inspection methods against the potential rise
in retail operational costs, as well as technology-related
expenses. Interestingly, our study also reveals that manu-
facturers might opt for AI inspection even when it is less
accurate or more costly, highlighting the complexity of
technology adoption decisions.

Our study extends the discussion beyond the manufac-
turer’s decision to adopt AI inspection, to further consider

the mutual decision-making on whether the manufacturer and
supplier should pursue technology sharing. For instance, GE
in the aviation sector utilizes AI inspection to enhance its own
product quality but does not share the technology with its sup-
plier (Bjerregaard, 2023), in contrast to HPE in the electrical
sector, which adopts AI inspection internally and also extends
this advanced technology to its supplier, Foxconn, promot-
ing a cooperative quality management strategy (HPE, 2023).
This leads to our second critical research question: Should
the manufacturer and supplier pursue the dual AI inspection
strategy when the revenue from technology-sharing exceeds
the setup costs? Conventional wisdom suggests that compa-
nies favor technology-sharing when it promises significant
revenue (Arora et al., 2013). However, our findings suggest
that this is not always the case, and the manufacturer or sup-
plier may still be reluctant to technology sharing even when
the revenue from sharing is higher than the initial costs of
technology setup.

The collaborative technology-sharing strategy may induce
the manufacturer to adjust its investment in AI inspection
technology as a measure of cost mitigation. Some manufac-
turers, such as printed circuit board (PCB) firms, may invest
less in AI inspection to identify appearance defects. In con-
trast, others, like Toyota, may invest more to detect internal
and external quality failures. Given this decision, we aim to
address the third question: Should the manufacturer invest
more when sharing technology with the supplier in the sup-
ply chain? Ge and Hu (2008) propose that the coordination
relationship in the supply chain could lead to higher invest-
ment, promoting the quality level. However, we find that the
manufacturer may invest less when sharing AI inspection
technology with the supplier. Our result suggests that with
stronger technical capabilities and lower initial costs of tech-
nology setup, manufacturers should strategically reduce their
investment for better performance of technology-sharing.
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4 AI INSPECTION IN SUPPLY CHAIN

The adoption of AI technology in the supply chain may
generate spillover effects. Hence, our study analyzes the
impact of AI inspection from the supplier’s perspective, pos-
ing this question: Does AI inspection adoption benefit the
supplier? Although Reyniers and Tapiero (1995) find that the
practical and cost-efficient inspection policies by manufac-
turer benefit the supplier, our findings show that regardless
of whether AI inspection is solely conducted by the man-
ufacturer or shared with the supplier, both approaches may
still pose risks to the supplier’s interests. Therefore, we rec-
ommend that suppliers carefully evaluate the decision on
AI inspection technology, taking into account specific fac-
tors like the defect rate of the product and the efficacy of
traditional inspection methods.

While AI holds promise for enhancing efficiency and
reducing reliance on human labor, a recent report shows
that excessive AI automation cannot adapt to the changes in
complex factory work, which may increase the supply chain
burden (Büchel & Floreano, 2018; Hou et al., 2024). This can,
paradoxically, add to the challenges faced by supply chains.
Similarly, Kumar et al. (2020) critiques the over-enthusiasm
for new supply chain management technologies, noting that
the hype often leads to unrealistic expectations and sub-
sequent disappointment. This leads to another interesting
research question: Is AI inspection universally beneficial for
the supply chain? Contrary to the optimism expressed by Bai
et al. (2022), who suggest that technology innovation can
amplify the positive impact of quality investment along the
supply chain, our results show that adopting AI inspection
may not always reduce the overall costs.

The rest of the article is structured as follows. Section 2
reviews the related literature. Section 3 presents our model.
Section 4 summarizes the results. Section 5 provides dis-
cussion and managerial insights. We consider several model
extensions and analyze the robustness of our results in Sec-
tion 6. Finally, we conclude this study by providing executive
and policy implications in Section 7.

2 LITERATURE REVIEW

Our work is related to the following three streams of litera-
ture: inspection strategy, supply chain quality management,
and new technology in quality management. In this section,
we summarize the research context and highlight our con-
tributions. For clarity, we illustrate our research context and
contributions in Figure EC.1 in the Appendix.

2.1 Inspection strategy

Most studies in this stream examine how firms utilize inspec-
tion to identify whether products meet quality standards and
to analyze the impacts of these inspection practices on both
product quality and retail pricing strategies (Chen et al., 2022;
Reyniers & Tapiero, 1995). Further, some studies investi-
gate the relationship between the inspection strategy and

technology investment in quality or inspection (Erkoc et al.,
2023; Lee & Li, 2018). Our research is similar to these in
its focus on the manufacturer’s optimal inspection strategies
but is unique in its consideration of advanced technology
like AI inspection technology on manufacturers’ choice of
inspection modes.

Although the existing research on inspection strategy con-
siders technology investment in quality inspection, attention
has mainly been given to cases where the firm invests in
inspection by training the inspector or increasing the number
of test runs. In addition, because plenty of firms concentrate
on the concrete implementation of AI inspection technol-
ogy, the academic studies within this research stream are
mostly technical, not managerial (Azamfirei et al., 2023).
As a result, the operations management literature lacks a
concentration on AI inspection strategy, a gap that our
study fills by considering inspection modes to investigate the
impacts of AI technology on manufacturer inspection strate-
gies. Interestingly, we find that AI inspection technology is
not always helpful.

The research on inspection strategies examines firms’
choices whether to inspect or not, and their decisions on
inspection level if they do so (Chen et al., 2022; Kim
et al., 2022). Furthermore, some studies refine the inspec-
tion level consideration to encompass inspection accuracy
or sampling ratio. For example, Lee & Li (2018) consider
the buyer’s investment decision in inspection accuracy for
incoming products from the supplier with full inspection.
Similar to Erkoc et al. (2023), our model sets AI inspection
accuracy as a variable determined by the manufacturer’s tech-
nology investment. However, differing from these studies in
the way they consider, our research considers implementation
practices for AI technology as a means to promote full inspec-
tion. Additionally, given the characteristics of the technology
reducing the need for human resources, we incorporate the
negative correlation between the unit inspection cost and
technology investment in our model extension. Our study
contributes to the literature by investigating the manufac-
turer’s investment decisions regarding AI inspection accuracy
to assist the managers in adjusting technology investment to
achieve higher supply chain operations efficiency.

2.2 Supply chain quality management

Supply chain quality management is a systematic approach
that engages key stakeholders to enhance the overall perfor-
mance of the supply chain, focusing on product quality and
cost efficiency of logistics and retail. Many studies investigate
firms’ various product quality strategies to improve supply
chain performance within decentralized and centralized sup-
ply chains (Fu et al., 2020). Some studies analyze the impact
of quality risk ratings or vendor certification on the supplier’s
quality improvement (Hwang et al., 2006; Zhou & Johnson,
2014). Other scholars put effort into identifying the roles of
supplier and manufacturer in supply chain quality manage-
ment (Dong et al., 2016; Shen & Sun, 2023), going further
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PEI ET AL. 5

to examine the effects of the supplier-manufacturer relation-
ship on retail efficiency. Similar to these studies, our research
focuses on the supplier-manufacturer relationships in supply
chain quality management, examining the manufacturer’s and
supplier’s quality decisions in a collaborative supply chain.

The literature also explores various quality contracts
between suppliers and manufacturers to optimize cost effi-
ciency across all stages of the supply chain. In one related
study, Dong et al. (2016) compare an inspection-based
approach to an external failure-based approach in outsourcing
supply chains, suggesting that inspection effectively reduces
agency costs by preventing retail returns. Chakraborty et al.
(2019) focus on collaborative quality strategies in a supply
chain involving two competing manufacturers, evaluating the
economic return on three cost-sharing mechanisms. Zhang
et al. (2022) study the decisions of the contract man-
ufacturer regarding product quality and design incentive
contracts under two outsourcing structures, while Bondareva
and Pinker (2019) propose a buyer-supplier dynamic con-
tract where the buyer leverages inspection and compensation
contracts to induce the supplier’s quality investment. Yet,
few studies jointly explore the impact of the collabora-
tive inspections involving the supplier and manufacturer
on cost optimization in the supply chain. However, quality
inspection is a cost-effective method for identifying and pre-
venting quality issues, thereby reducing operational costs in
the supply chain (Jonble, 2023). Hence, the study on the
gap in the impact of collaborative inspection is necessary.
To fill this gap, our study model investigates a two-level
inspection process and then quantifies its impact on supply
chain performance.

The literature on the manufacturer-supplier collaboration
mainly analyzes the situations where manufacturers invest in
supplier quality improvement through technical and financial
support (Agrawal et al., 2016). However, our study dif-
fers from this stream of literature. In our work, we follow
the practical case of HPE and explore a new collaborative
relationship where the manufacturer shares new inspection
technology with the supplier. To guide manufacturers and
suppliers in leveraging AI inspection technology better, we
analyze the impact of technology-sharing on supply chain
quality management. Our work complements the literature
by showing the downside of technology-sharing. We find
that technology-sharing may not always benefit the supply
chain members.

2.3 New technology in quality management

Prior research indicates that new technologies, like the
Internet of Things, AI, and blockchain, create value in qual-
ity management by supporting production, distribution, and
retail stages of the supply chain (Choi et al., 2022). Moreover,
some studies provide insights on the adoption of new tech-
nology in different manufacturing sectors from a technology
perspective (Olsen & Tomlin, 2020), while others investi-
gate technology innovations in quality management with an

empirical approach (Cui et al., 2022; Senoner et al., 2022).
Our study is similar to these studies, though focusing on both
the advantages and disadvantages of adopting AI technology
in quality management, with a particular focus on optimizing
retail returns.

Although the literature considers the adoption of AI in
different fields of quality management, such as retail and
production, there is an absence of research into how AI
inspection technology can reshape quality management and
improve cost efficiency. Additionally, some studies empha-
size the advantages of technology innovation for quality
management, including higher quality levels, lower human
costs, and more accurate analysis capabilities (Kumar et al.,
2020). However, these studies often overlook the potential
disadvantages of new technology. To fill this gap, our study
focuses on adopting AI in inspection and helps managers
develop AI-driven supply chain quality management. Our
work sets the parameter of AI inspection accuracy as a vari-
able to emphasize the relationship between technical input
and output of AI inspection.

Following the model setup of Senoner et al. (2022), who
investigate the impacts of technology investment on pro-
duction and retail activities, we consider the manufacturer’s
decision on technology innovation in the inspection process
conducted by the upstream supplier and downstream man-
ufacturer. Moreover, some studies examine the effects of
advanced technology on redesigning business processes, sug-
gesting that advanced technology overcomes the defects in
traditional trade-offs (Cui et al., 2022). Similarly, we analyze
the new trade-offs driven by AI inspection. We also pro-
pose new dual strategies in AI-driven supply chain quality
management, examining the effects of AI inspection from a
cost-reduction perspective. Interestingly, our study indicates
that adopting AI in quality inspection may prove detrimental.

3 THE MODEL

In this section, we introduce the model setup, with key nota-
tions summarized in the Appendix (Section EC.1). Based on
the diverse practices of AI inspection adoption across various
industries, our study focuses on inspection-oriented quality
management in a supply chain comprising a manufacturer
(denoted with subscript m) and a supplier (denoted with sub-
script s), with a two-stage process illustrated in Figure 2.
For the convenience of exposition, we define the supplier’s
quality inspection as Stage 1 and the manufacturer’s quality
inspection as Stage 2, occurring before the retail phase.

3.1 Supplier’s quality inspection

In Stage 1, upon receiving the manufacturer’s product order,
the supplier produces N units of products and then inspects
them to ensure their reliability (Hsieh & Liu, 2010). Product
reliability is reflected in the defect rate of products, denoted
by p ∈ [0, 1], with a higher p reflecting lower product reli-
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6 AI INSPECTION IN SUPPLY CHAIN

F I G U R E 2 The quality inspection process in a supply chain.

ability (Gao et al., 2023). Generally, firms adopt traditional
inspection to control product quality. However, some suppli-
ers have recently cooperated with manufacturers to acquire
AI inspection capabilities. Consequently, the supplier imple-
ments either traditional inspection (denoted with subscript t)
or AI inspection (denoted with subscript a), depending on the
manufacturer’s decision about whether to share technology
with the supplier and the supplier’s decisions about whether
to accept it. As such, unless both the manufacturer shares
technology and the supplier accepts it, the supplier will adopt
traditional inspection.

When adopting the traditional inspection method to iden-
tify defective products, the supplier bears internal costs,
including inspection and repair costs. In traditional inspection
mode, firms like Boeing typically opt for sample inspec-
tion due to high inspection costs and lengthy check time
(Cavanaugh, 2023; Federal Aviation Administration, 2023).
Following this practice, the supplier pays inspection costs
N𝜃sct for inspection operations, where 𝜃s ∈ (0, 1) is the sup-
plier’s sampling ratio and ct is the corresponding per-unit
inspection cost. Notably, the inspection is imperfect in identi-
fying all product defects, conditional on inspection accuracy
(Dong et al., 2016). If the supplier’s traditional inspec-
tion accuracy is 𝛼s ∈ (0, 1), then it can correctly inspect
Np𝜃s𝛼s defective products, leading to a reduction in the defect
rate from p to p(1 − 𝜃s𝛼s). When these faulty products are
rejected during the inspection, the supplier repairs them and
incurs costs Np𝜃s𝛼sr, where r is the per-unit repair cost.

When accepting technology sharing, the supplier, fol-
lowing Lenovo’s practice, can employ AI inspection to

improve inspection efficiency, particularly in full inspection
and reduced unit inspection cost (Instrumental, 2023). Specif-
ically, AI inspection technology enables firms to inspect
products at a lower per-unit cost of AI inspection, ca, where
ca < ct; that is, inspection costs change from N𝜃sct to Nca.
Moreover, the supplier’s inspection accuracy is consistent
with the manufacturer’s AI inspection accuracy x, so the
supplier can identify and repair Npx flawed items. In this
technology-sharing transaction, the manufacturer is respon-
sible for configuring the AI technology, in return for which
the supplier pays the manufacturer a fixed technology-sharing
fee F for accessing (Intel, 2023). Additionally, because AI
inspection involves some high-precision equipment, the sup-
plier incurs an up-front setup cost of u for the installation
and necessary equipment. After the inspection, the supplier
ships the batch of products, including those repaired, to the
downstream manufacturer.

3.2 Manufacturer’s quality inspection

In Stage 2, the manufacturer conducts an inspection of
the received products before packaging them (Kim et al.,
2022). When the manufacturer adopts traditional inspec-
tion, it undertakes inspection costs N𝜃mct, where 𝜃m is the
manufacturer’s sampling ratio. The manufacturer’s ability to
identify defective products depends on the sampling ratio
and inspection accuracy. Given the manufacturer’s inspec-
tion accuracy 𝛼m, the manufacturer can recognize Np(1 −
𝜃s𝛼s)𝜃m𝛼m defective items. If the product is rejected during
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PEI ET AL. 7

the inspection, the supplier repairs the defect and then returns
the qualified product back to the manufacturer, leading to a
unit repair cost r and unit logistics cost Ls (Erkoc et al., 2023).

The manufacturer can invest in AI technology to estab-
lish a completely automated inspection process. Due to the
adoption of full inspection, inspection costs become Nca,
where ca is the unit cost of AI inspection. In practice,
as the accuracy of AI inspection increases, the manufac-
turer’s investment in AI inspection technology also increases
(Bondareva & Pinker, 2019). To reflect the effects of dimin-
ishing marginal return, the investment is usually modeled
as a convex increasing function of the technology’s inspec-
tion accuracy (Lee & Li, 2018; Zhang et al., 2021). Given
AI inspection accuracy x ∈ (0, 1), the manufacturer incurs a

technology investment
1

2
𝜆x2 + u and identifies Np(1 − 𝜃s𝛼s)x

units of defective products. Parameter 𝜆 represents the effi-
ciency of converting technology investment into inspection
accuracy, and parameter u denotes the up-front step cost
stemming from the equipment of AI inspection.

To further enhance the quality of the supply chain, the
manufacturer can share technology with the supplier through
embedding an AI inspection system and equipment into
the supplier’s existing IT infrastructure. When the supplier
agrees to adopt this shared technology, due to the need for
system compatibility and retraining, the manufacturer must
undertake considerable efforts toward the technology con-
figuration, including remote data transmission and system
standardization (LandingAI, 2020; Li & Chen, 2012). A
higher AI inspection accuracy x requires more extensive
efforts to configure AI inspection (Intel, 2023) successfully.
Hence, the manufacturer incurs a configuration cost kx to
ensure consistent quality management, and the supplier’s
AI inspection accuracy becomes x. The parameter k acts
as the configuration cost coefficient, and a lower value of
k means a stronger manufacturer’s capability of technology
configuration. In the sharing environment, the manufacturer
discovers Np(1 − x)x units of defective products during its
inspection process.

Following the retail release, once the batch of products,
including repaired items, reaches consumers, any defects are
identified through usage, potentially triggering retail returns
(Zhang et al., 2022). Referring to the example of retail returns
by Sanyo and Lenovo (MacMillan, 2007), the manufacturer
faces a unit logistic cost Lm to retrieve each defective prod-
uct from customers, while the supplier incurs Ls for each
retail returned item from the manufacturer (Geda et al., 2023).
When a return occurs, the supplier and the manufacturer share
a unit external failure cost E, encompassing expenses such as
settlements of lawsuits and public notifications (Kim et al.,
2022). Specifically, the manufacturer bears 𝛽E, and the sup-
plier covers (1 − 𝛽)E, reflecting their respective shares of the
external failure cost, where 𝛽 ∈ [0, 1]. The supplier is gen-
erally accountable for the defective products regardless of
whether these flaws are discovered by the manufacturer or
customers (Sabouri et al., 2015). Consequently, the supplier
bears the overall repair cost Npr.

3.3 Timeline

Given the strategic options available to firms in practice,
this study considers three distinct schemes: (i) Traditional
Inspection (TI)—both the manufacturer and supplier rely
on conventional inspection methods, without adopting AI
technology; (ii) Sole AI Inspection (SA)—the manufacturer
invests in AI inspection technology, while the supplier con-
tinues with traditional methods; (iii) Dual AI Inspection
(DA)—the manufacturer invests in and shares AI inspection
technology, and the supplier accesses it. Next, we illus-
trate the timing of the model, which is also illustrated in
Figure 3.

(1) The manufacturer makes two decisions regarding
quality management: Whether to invest in AI inspec-
tion technology and, if so, whether to share it with
the supplier. Then, the supplier decides whether
to access technology if the manufacturer shares
technology.

(2) The manufacturer determines the level of investment
in the AI inspection technology (i.e.,

1

2
𝜆x2 + u).

(3) The event sequence faced by the manufacturer and
supplier is as follows:

(a) Under a TI scheme, the manufacturer and supplier
adopt traditional inspection with accuracy 𝛼m, 𝛼s,
and a unit cost of traditional inspection ct. The sup-
plier needs to repair defective items with a unit repair
cost r, and when the manufacturer returns the faulty
products for repairs, the supplier incurs a unit logis-
tics cost Ls and repair cost r. During the retail stage,
when end customers return faulty items, the manu-
facturer incurs a unit logistic cost Lm, as both the
manufacturer and the supplier also suffer the external
failure costs at 𝛽E and (1 − 𝛽)E, respectively, due to
retail return of the defective products.

(b) Under an SA scheme, the supplier adopts traditional
inspection with accuracy 𝛼m and a unit cost of tradi-
tional inspection ct. The supplier also needs to repair
defective items with a unit repair cost r, while the
manufacturer adopts AI inspection with accuracy x
and a unit cost of AI inspection ca. When the man-
ufacturer returns the defective products, the supplier
incurs a unit logistics cost Ls. During the retail stage,
when end consumers return faulty items, the manu-
facturer incurs a unit logistic cost Lm. Additionally,
the manufacturer and the supplier bear the external
failure costs at 𝛽E and (1 − 𝛽)E, respectively.

(c) Under a DA scheme, both the supplier and manu-
facturer adopt AI inspection with accuracy x and a
unit cost of AI inspection ca. The supplier also needs
to repair defective items with a unit repair cost r.
The manufacturer is charged for a technology con-
figuration cost kx and, in turn, charges the supplier
a technology-sharing fee F. When the manufacturer
returns the defective products, the supplier incurs a
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8 AI INSPECTION IN SUPPLY CHAIN

F I G U R E 3 Model timeline.

unit logistics cost Ls, and then when end customers
return faulty items during the retail stage, the man-
ufacturer incurs a unit logistics cost Lm. Due to the
product return losses, the manufacturer and the sup-
plier bear external failure costs at 𝛽E and (1 − 𝛽)E,
respectively.

4 RESULTS

In this section, we establish the total cost functions for
the manufacturer and supplier under three scheme options:
TI, SA, and DA. We solve the game equilibrium and
provide the relevant results and analytical proofs in the
Appendix (Section EC.3).

Under the TI scheme, the manufacturer opts for manual
inspection without extra investment. The manufacturer’s total
cost equals the sum of its inspection costs, logistic costs,
and external failure costs, while, in addition to these costs,
the supplier also bears the additional burden of repair costs.
Under the SA scheme option, in comparison, the manufac-
turer invests in AI technology for a more economical unit
cost of inspection, whereas the supplier’s total cost is similar
to that in the TI case. Under the DA scheme, the manufac-
turer allows the supplier to access AI technology, improving
quality inspection efficiency across the supply chain. Unlike
the SA scheme, collaborative use of AI inspection technology
leads to potential improvement in the supplier’s inspection
accuracy, with the resulting decrease in product quality fail-
ure rate benefiting the manufacturer and the supplier. In this
case, the manufacturer may also enjoy lower total costs from
the revenue earned from sharing its technology, as the sup-

plier’s total cost rises with the sharing fees it pays for the
improved quality inspection.

We use the binary variable 1a ∈ {0, 1} to denote the
manufacturer’s decision whether to invest in AI inspection
technology, whereby 1a = 0 indicates that the manufacturer
doesn’t invest, and 1a = 1 indicates that the manufacturer
invests. Similarly, another binary variable 1M ∈ {0, 1} indi-
cates the manufacturer’s decision to share technology, and
1S ∈ {0, 1} indicates the supplier’s decision to access the
technology. When 1a = 1 is satisfied, if the manufacturer
chooses 1M = 0 or the supplier chooses 1S = 0, then the man-
ufacturer does not share technology or the supplier does not
access technology. If the manufacturer decides 1M = 1 and
the supplier chooses 1S = 1, then the manufacturer is willing
to share technology, and the supplier accesses it. Therefore,
the manufacturer’s total cost function is simplified as follows:

Cm(1a, 1M , x) = N[(1 − 1a)𝜃mct

+1aca] + Np[1 − (1 − 1a1M1S)𝜃s𝛼s − 1a1M1Sx][1

−(1 − 1a)𝜃m𝛼m − 1ax](Lm + 𝛽E)

+1a(
1
2
𝜆x2 + u) + 1a1M1S(kx − F).

The supplier’s total cost function is given as:

Cs(1S) = N[(1 − 1a1M1S)𝜃sct + 1a1M1Sca]

+Npr + Np[1 − (1 − 1a1M1S)𝜃s𝛼s − 1a1M1Sx][1 − (1

−1a)𝜃m𝛼m − 1ax](1 − 𝛽)E + Np[1 − (1 − 1a1M1S)𝜃s𝛼s
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PEI ET AL. 9

−1a1M1Sx]Ls + 1a1M1S(F + u).

The supply chain’s total cost function is given as: C =

Cm(1a, 1M , x) + Cs(1S).
To minimize total costs, the manufacturer strategically

chooses 1a, 1M , and x, while the supplier determines 1S.
By backward induction, we first solve the total equilibrium
costs of the manufacturer and supplier under the TI, SA,
and DA schemes, which are summarized in our Lemmas. We
then prove the existence of a Nash equilibrium and provide
the equilibrium conditions of the best scheme, as shown in
Lemma 1.

Lemma 1. The manufacturer’s optimal scheme is summa-
rized as follows:

(a) If ca > ca11 and ca > ca12, then the manufacturer attains
the lowest total cost under the TI scheme;

(b) If F < F11 and ca < ca11, then the manufacturer attains
the lowest total cost under the SA scheme with its optimal

AI inspection effort level x =
(1−𝜃s𝛼s)Np(Lm+𝛽E)

𝜆
;

(c) If F > F11 and ca < ca12, then the manufacturer attains
the lowest total cost under the DA scheme with its optimal

AI inspection effort level x =
2Np(Lm+𝛽E)−k

2Np(Lm+𝛽E)+𝜆
.

The expressions of the above thresholds ca11, ca12, and F11
are shown in the Appendix (Section EC.2).

The above results demonstrate that the manufacturer tends
to invest more when incurring a higher unit external fail-
ure cost (i.e., higher 𝛽E), and invest less when the cost
coefficient of AI technology is relatively high (i.e., higher
𝜆), aligning with previous research (Erkoc et al., 2023).
Moreover, we observe that there is diminishing sensitivity
toward AI inspection efforts to mitigate external losses under
the DA scheme, while the sensitivity drops to the point of

insignificance under the SA scheme (i.e.,
d2xDA

d(Lm+𝛽E)2
< 0 and

d2xSA

d(Lm+𝛽E)2
= 0). This trend occurs because the changes in the

magnitude of AI inspection efforts more significantly affect
the failure rate of the end products, leading to a reduction in
retail return costs under DA. Hence, when the manufacturer
bears a higher share of the external failure cost, the variation
in AI inspection effort diminishes. This result emphasizes
that manufacturers who face substantial retail return costs
do not always blindly pursue technology innovation within
a collaborative environment.

5 DISCUSSION AND MANAGERIAL
INSIGHTS

In this section, we address the research questions raised
in Section 1.2 and present the findings. The proofs of the
propositions are provided in the Appendix (Section EC.5).
We also conduct numerical experiments to examine the

rationality of our results and visually represent it in the
Appendix (Section EC.4).

5.1 Should the manufacturer adopt AI
inspection in the supply chain?

Manufacturers have utilized AI inspection to prevent defec-
tive products from entering the retail market, such as Toyota
in the automotive industry and Weichai in the automotive
engine industry (Weichai, 2019). However, some manufac-
turers still insist on traditional inspection. For instance, in the
aviation industry, Boeing adopts manual and visual methods
to inspect the dimensions of products. Hence, manufacturers
are debating whether to adopt AI inspection as an alternative
to traditional inspection in supply chain quality manage-
ment (Cavanaugh, 2023). To understand the manufacturer’s
decision to choose AI inspection strategies (i.e., 1a = 1),
we address our first question in Proposition 1: Should the
manufacturer adopt AI inspection in supply chain quality
management, especially when AI promises greater accuracy
and lower costs than traditional methods? Additionally, we
address another critical question: Should the manufacturer
refuse AI inspection in the supply chain quality manage-
ment, especially when AI lags behind traditional methods in
accuracy or inspection costs?

Proposition 1.

(a) Even if AI inspection accuracy is higher than tradi-
tional inspection (i.e., xSA > 𝛼m and xDA > 𝛼m) and the
AI inspection cost is lower (i.e., ca < 𝜃mct), the manu-
facturer may not adopt AI inspection. Interestingly, this
happens when the supplier’s traditional inspection accu-
racy is in a given immediate range (i.e., max{𝛼s1, 𝛼s3} <
𝛼s < 𝛼s2).

(b) Even if AI inspection accuracy is lower than traditional
inspection (i.e., xSA < 𝛼m or xDA < 𝛼m) or the AI inspec-
tion cost is higher (i.e., ca > 𝜃mct), the manufacturer may
still adopt AI inspection. Interestingly, this happens when
the supplier’s traditional inspection accuracy is higher
than a given threshold (i.e., 𝛼s > 𝛼s2) or lower than a
given threshold (i.e., 𝛼s < max{𝛼s1, 𝛼s3}).

The expressions of the above thresholds 𝛼s1, 𝛼s2, and 𝛼s3

are 𝛼s1 =
1

𝜃s
−

√
2𝜆[N(ca−𝜃mct)+u]+𝜆2𝜃2

m⋅𝛼
2
m+𝜆𝜃m𝛼m

Np(Lm+𝛽E)𝜃s
, 𝛼s2 =

1

𝜃s
−

−
√

2𝜆[N(ca−𝜃mct)+u]+𝜆2𝜃2
m⋅𝛼

2
m+𝜆𝜃m𝛼m

Np(Lm+𝛽E)𝜃s
, and 𝛼s3 =

1

𝜃s
−

N(ca−𝜃mct)−F+u

𝜃sNp(Lm+𝛽E)(1−𝜃m𝛼m)
−

4Np(Lm+𝛽E)k+2Np(Lm+𝛽E)𝜆−k2

2𝜃sNp(Lm+𝛽E)(2Np(Lm+𝛽E)+𝜆)(1−𝜃m𝛼m)
.

Senoner et al. (2022) suggest that most firms adopt AI
technology in quality management intending to enhance
inspection accuracy and mitigate the high costs associated
with labor, with industry leader Intel boasting that AI inspec-
tion consistently outperforms human visual inspection in
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10 AI INSPECTION IN SUPPLY CHAIN

terms of product surface and appearance assessments (Intel,
2023). Because of this stellar performance, semiconduc-
tor companies have embraced AI technology for quality
inspection purposes, although the limited capability of AI
inspection in complex equipment industries has led to a
relatively low adoption rate among enterprises (Grand-
ViewResearch, 2021). Based on these practices, one may
intuit that the manufacturer’s decision to adopt AI inspection
depends on its efficiency regarding inspection accuracy and
costs. However, interestingly, our findings show that even
if AI inspection is more efficient (i.e., higher inspection
accuracy and lower inspection costs), the manufacturer may
not always choose to implement it in the supply chain.

The result of Proposition 1 can be explained as follows:
Higher AI inspection accuracy has a positive impact on

reducing the product defect rate (i.e.,
dp(1−𝛼s𝜃s)(1−x)

dx
< 0 and

dp(1−x)(1−x)

dx
< 0). Because fewer defective products enter the

market, the manufacturer’s external losses caused by retail
returns (e.g., logistic and external failure costs) decrease (i.e.,
lower Np(1 − 𝛼s𝜃s)(1 − x)(Lm + 𝛽E) and Np(1 − x)2(Lm +

𝛽E)). However, in some cases, even with AI inspection,
the external losses from defective products may decrease
insignificantly or even increase, failing to compensate for
AI technology expense. This is because the final prod-
uct defect rate depends on the supplier and manufacturer’s
inspections. The supplier’s higher inspection accuracy could
prevent excessive final product defect rate and external losses,
whereas higher AI inspection accuracy may save limited
retail return costs but requires the manufacturer to pay more

AI technology expense (i.e., higher
1

2
𝜆x2). Thus, despite

the cost advantages of AI inspection (i.e., ca < 𝜃mct), the
benefits derived from the reduced external losses may not
necessarily compensate for the increased AI technology
expense.

Figure EC.2 in the Appendix visually demonstrates the
relationship between the manufacturer’s total cost and the
supplier’s traditional inspection accuracy. When the sup-
plier’s traditional inspection accuracy is in a given immediate
range (i.e., max{𝛼s1, 𝛼s3} < 𝛼s < 𝛼s2), the benefits of AI
inspection, such as lower external losses and lower inspection
costs, could be insignificant, which cannot compensate for the
high AI technology expense. Thus, the manufacturer would
not adopt AI inspection. Conversely, when the supplier’s tra-
ditional inspection accuracy is higher than a given threshold
(i.e., 𝛼s > 𝛼s2), the manufacturer has no need for higher AI
inspection accuracy. In this case, although the positive effect
of AI inspection on reducing external losses could be slight
or even negative, the AI technology expense is much lower.
The lower inspection costs can offset the increased AI tech-
nology expense and external losses. Thus, the manufacturer
would adopt AI inspection. Additionally, when the supplier’s
traditional inspection accuracy is lower than a given thresh-
old (i.e., 𝛼s < max{𝛼s1, 𝛼s3}), the manufacturer could benefit
even more from reduced external losses through higher AI
inspection accuracy and the cost savings outweigh the AI
technology expense. Hence, the manufacturer would bene-

fit more from AI inspection. Moreover, as shown from the
threshold functions, the unit AI inspection cost decreases the
value of thresholds 𝛼s1 and 𝛼s3, but increases the value of

threshold 𝛼s2 (i.e.,
d𝛼s1

dca
< 0,

d𝛼s3

dca
< 0, and

d𝛼s2

dca
> 0), which

means that the manufacturer is more willing to adopt AI
inspection with lower unit AI inspection cost.

The result provides a practical implication for manufactur-
ers who dominate the technology investment in supply chain
quality management. Even when the AI inspection accuracy
is both more accurate and less expensive than traditional
inspection, the manufacturer may not see a drop in its qual-
ity management costs with AI inspection, aligning with the
findings of Lee & Li (2018). Specifically, if the supplier’s tra-
ditional inspection accuracy is in a given intermediate range,
the manufacturer’s savings in external losses and inspec-
tion costs cannot offset AI technology expenses. Managers
should consider the trade-offs between external failure costs
and AI technology expenses, as well as the impact of the
supplier’s inspection accuracy. Our result suggests that if
the supplier’s traditional inspection accuracy is in the given
immediate range, the manufacturer (e.g., General Motors)
should not adopt AI inspection as a supply chain management
tool. However, if the manufacturer insists on AI inspec-
tion strategy under these circumstances, managers should
reduce the unit AI inspection cost to ease the conditions for
successful AI inspection adoption, making AI inspection a
more cost-effective strategy. Conversely, if the supplier’s tra-
ditional inspection accuracy is relatively low or high, the
manufacturer (e.g., Tesla) should adopt AI inspection.

To illustrate that our results can hold in practice, we can
look to the anecdotal evidence of Toyota’s strategic change
to embrace AI inspection. In 2010, Toyota encountered a
series of retail return incidents stemming from faulty accel-
erator pedals supplied by supplier CTS. This return incident
revealed several shortcomings in Toyota’s supplier audits for
safety-critical products, such as lower inspection accuracy
and the sampling rate of suppliers (Evans, 2010). In response,
Toyota adopted AI inspection in the quality management
process and intensified its quality audits on key suppli-
ers (Reuters, 2020), illustrating how a supplier’s diminished
inspection accuracy with traditional methods can prompt the
manufacturer to prefer AI inspection.

This result contributes to the relevant literature in supply
chain quality management with a focus on inspection strat-
egy. As shown in Sections 2.1 and 2.2, although the literature
has explored how manufacturers leverage traditional inspec-
tion strategy to manage supply chain quality for maximizing
the profit, these studies have not considered the adoption of
AI inspection in a supply chain. Moreover, as shown in Sec-
tion 2.3, the literature on AI inspection mainly concentrates
on technology adoption and presents systematic reviews of
the current technology trends (Azamfirei et al., 2023; Cui
et al., 2022). In response, this study explores the impact of
AI inspection strategy on quality management and proposes
a framework for manufacturers to determine whether to adopt
AI inspection.
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PEI ET AL. 11

5.2 Should the manufacturer and supplier
pursue dual AI inspection strategy?

The manufacturer’s adoption of AI inspection technology in a
supply chain raises a new question: Should the manufacturer
share technology and the supplier access it? In the electronic
information industry, HPE, a global leader in AI inspection,
provides AI inspection technology to strategic supplier part-
ners, such as Foxconn, for cooperation and integration of
quality management (HPE, 2023). However, in the aviation
industry, GE and its suppliers refuse to share AI inspection
technology (Bjerregaard, 2023). The decision to choose the
dual AI inspection strategy (i.e., 1M = 1 and 1s = 1) has
sparked a heated discussion. Motivated by a lack of clear
direction in this discussion, we attempt to analyze the crit-
ical question: Should the manufacturer refuse to share AI
inspection technology or its supplier refuse to accept tech-
nology when the revenue from technology-sharing exceeds
the configuration cost? We also figure out another vital ques-
tion: Should the manufacturer share AI inspection technology
and its supplier access technology when the revenue from
technology-sharing is less than the configuration cost?

Proposition 2.

(a) Even if the manufacturer’s revenue from the technology-
sharing fee is higher than the configuration cost (i.e., F >

kxDA), the manufacturer and the supplier would opt for
the SA strategy when the supplier’s traditional inspection
accuracy is higher than the given threshold (i.e., 𝛼s >

min{𝛼s4, 𝛼s5}).
(b) Even if the manufacturer’s revenue from the technology-

sharing fee is less than the configuration cost (i.e., F <

kxDA), the manufacturer and supplier would still prefer
the DA strategy when the supplier’s traditional inspec-
tion accuracy is lower than the given threshold (i.e.,
𝛼s < min{𝛼s4, 𝛼s5}).

The expressions of the above thresholds

𝛼s4 and 𝛼s5 are: 𝛼s4 =
1

𝜃s
−

𝜆

𝜃sNpLm
+

1

𝜃sNpLm√
2𝜆

[
𝜆

2
+ F −

4NpLmk+2NpLm𝜆−k2

2(2NpLm+𝜆)

]
] and 𝛼s5 =

1

𝜃s
−

Ls

2(1−𝛽)ENp(Lm+𝛽E)𝜃s
+

1

𝜃s
{

1

N2p2(1−𝛽)E(Lm+𝛽E)
{Np(1 − 𝛽)E

[
𝜆+k

2Np(Lm+𝛽E)+𝜆
+

NpLs

2Np(1−𝛽)E

2
+

L2
s−Ls(Lm+𝛽E)

4(1−𝛽)E(Lm+𝛽E)
+

Np(1 − 𝛽)E + u + F + N(ca − 𝜃sct)}}
1

2 .

Arora et al. (2013) suggest that technology compa-
nies favor deals where the technology licensing revenue
is higher, and so it follows that if the manufacturer’s
technology-sharing revenue from the supplier is higher than
the configuration cost, the manufacturer prefers to share
AI inspection technology. However, Proposition 2 shows
a counter-intuitive result that even if the manufacturer’s

technology-sharing revenue exceeds the configuration cost,
the manufacturer may not share technology, or the sup-
plier refuses to access technology. Conversely, even if the
manufacturer’s technology-sharing revenue is lower than the
configuration cost, the manufacturer may still decide to share
technology, and the supplier accesses technology.

The explanation for the result of Proposition 2 is as fol-
lows. According to Proposition 1, in the SA scenario, when
the supplier’s inspection accuracy is higher, leading to a sub-
stantial decline in external losses, the manufacturer invests

less in AI inspection (i.e.,
dxSA

d𝛼s
< 0). However, in the DA

environment, because the supplier also conducts AI inspec-
tion, the supplier’s traditional inspection accuracy does not

affect AI technology expense (i.e.,
dxDA

d𝛼s
= 0). Note that with

technology-sharing, the supplier’s inspection accuracy is the
same as that of the manufacturer. To significantly reduce
retail return costs associated with defects, the manufacturer
needs to invest more to achieve a higher level of over-
all quality inspection. In this case, the manufacturer incurs
higher AI technology expense and configuration costs, which
may decrease its profitability, while the supplier’s lower
inspection accuracy induces the manufacturer to invest more
in the SA environment. Hence, by sharing technology, the
manufacturer can achieve the same level of overall quality
inspection with lower AI technology expenses and configura-
tion costs. Moreover, the supplier’s lower inspection accuracy
amplifies the positive impact of AI inspection on reducing
external losses. Therefore, even with configuration cost and
technology-sharing fee, the supplier can attain superior qual-
ity inspection capability by accessing technology provided by
the manufacturer.

When the manufacturer and supplier adopt the DA scheme
rather than the SA scheme, if the supplier’s traditional inspec-
tion accuracy is higher than a given threshold (i.e., 𝛼s >

𝛼s4), the manufacturer needs to attain higher AI inspection
accuracy. In this case, the improvement in AI technology
expense and configuration cost outweighs the technology-
sharing revenue. Hence, technology-sharing aggravates the
manufacturer’s cost burden so that the manufacturer would
refuse to share technology with the supplier. Additionally,
Figure EC.3 in the Appendix shows how the supplier’s total
cost changes with 𝛼s. If the supplier’s traditional inspection
accuracy exceeds a given threshold (i.e., 𝛼s > 𝛼s5), the reduc-
tion in external losses from AI inspection may be slight,
which cannot offset technology-sharing fee and configuration
cost. Therefore, the supplier may refuse to access technology.
On the other hand, when the supplier’s traditional inspec-
tion accuracy is lower than a given threshold (i.e., 𝛼s <

min{𝛼s4, 𝛼s5}), the manufacturer could keep the same level of
overall quality inspection with the lower technology expense,
while the supplier can achieve a significant enhancement in
quality. With more effective return of technology expense, the
manufacturer and supplier are inclined to the DA strategy.

The result provides an important takeaway: When only
the manufacturer adopts AI inspection, the lower traditional
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12 AI INSPECTION IN SUPPLY CHAIN

inspection accuracy of the supplier motivates the manufac-
turer to set a higher AI inspection accuracy. However, when
both the supplier and manufacturer adopt AI inspection, this
motivation disappears, and the supplier processes the same AI
inspection capability as that of the manufacturer, as is consis-
tent with Lee & Li (2018) and Liu et al. (2018). Although
the manufacturer earns from sharing fees and the supplier
contends with the costs, the lower AI inspection accuracy
increases defective products, causing a dilemma where the
manufacturer profits amidst losses and the supplier bears
more external losses. Hence, firms should reconsider how the
cost trade-off is affected by the supplier’s traditional inspec-
tion accuracy, rather than focusing on the profitability of the
technology-sharing business.

Our result may provide a plausible explanation for
Lenovo’s choice of DA strategy and GE’s choice of SA strat-
egy (Bjerregaard, 2023; Instrumental, 2023). Most electronic
manufacturers who operate in complex supply chains, such
as Lenovo, may face suppliers with lower accuracy of manual
quality inspection, like Sanyo. Because Sanyo’s manual qual-
ity inspection failed to find battery issues, Lenovo suffered
great losses and chose to provide technical support to these
suppliers (MacMillan, 2007). Sharing AI inspection technol-
ogy helps Lenovo improve the overall quality management
of the supply chain, compensating for the suppliers’ losses
caused by limited manual inspection capabilities and enhanc-
ing product quality. In contrast, in the aviation industry, where
suppliers generally have higher levels of manual quality
inspection, with rigorous quality control systems, GE Avia-
tion focuses on developing its own AI inspection technology
to meet high standards and ensure product reliability.

The result of Proposition 2 contributes to the existing
research regarding collaborative quality management involv-
ing technology-sharing. As summarized in Sections 2.2
and 2.3, although some studies focus on the manufacturer’s
technical support to the supplier in the product development
stage (Lee & Li, 2018), the existing research has not con-
sidered technology-sharing strategy in supply chain quality
inspection. Moreover, few studies focus on manufacturers’
investment strategies in collaborative quality management.
Therefore, our study provides guidelines to the manufacturer
on the decision to share technology and the supplier on the
decision to access technology.

5.3 Should the manufacturer invest more in
technology sharing?

After identifying the decision on technology-sharing, it is
critical to explore whether the manufacturer invests more or
less in AI inspection technology. In supply chain quality man-
agement involving the collaboration of the manufacturer and
supplier, the DA scheme option not only allows the man-
ufacturer to provide technical support to the supplier but
also to benefit from technology-sharing revenue. Because
technology-sharing may cause effort distortion and spillover
effects, the manufacturer needs to adjust technology invest-

ment to minimize the quality cost (Bapna et al., 2023; Im
et al., 2019). Some manufacturers, like HPE, invest more to
achieve a higher quality in a DA environment (HPE, 2023).
However, due to the IT infrastructure and environment limi-
tations, sharing AI inspection technology in the supply chain
could result in complex cost performance trade-offs, which
makes some manufacturers hesitate to invest more (Intel,
2023). Thus, we propose the following question: Should the
manufacturer always invest more when sharing AI inspection
with the supplier in the supply chain?

Proposition 3. When the manufacturer adopts AI inspection
and shares the related technology with the supplier, it may
invest less in technology. This occurs when the coefficient of
the configuration cost is relatively high (i.e., k > k1) or the
capability of AI inspection is relatively high (i.e., 𝜆 < 𝜆1).

As previously stated, the manufacturer, as a leader, tends
to exert more effort in improving the supplier’s product
quality and enhancing the overall efficiency of the supply
chain (Lee et al., 2020). In our study, with the benefits
of technology-sharing, one may intuit that a DA strategy
would further encourage the manufacturer to invest more in
collaborative quality management of the supply chain. How-
ever, Proposition 3 challenges this intuition by demonstrating
that the manufacturer’s technology investment may decrease
with technology-sharing.

The explanation for the result of Proposition 3 is as
follows. When the manufacturer shares AI inspection tech-
nology with the supplier, the higher coefficient of the
configuration cost induces the manufacturer to invest less

in the DA scheme (i.e.,
dxDA

dk
< 0). If the coefficient of the

configuration cost is relatively high (i.e., k > k1), then the
technology investment is lower in DA than that in SA (i.e.,
xDA < xSA). Moreover, when the capability of AI inspection
is higher (i.e., lower 𝜆), the manufacturer sets a higher AI

inspection effort (i.e.,
dxSA

d𝜆
> 0 and

dxDA

d𝜆
> 0) in the SA and

DA schemes. Because both the supplier and manufacturer
use AI inspection, the DA scheme could achieve a more sig-
nificant marginal cost reduction in external losses compared
with SA (i.e., (1 − 𝜃s𝛼s)(1 − xSA) > (1 − xDA)2). In this case,
the manufacturer obtains more benefits from AI inspection.
Hence, when the capability of AI inspection is relatively high
(i.e., 𝜆 < 𝜆1), the manufacturer invests less in DA than in SA
(i.e., xDA < xSA).

Proposition 3 yields crucial insights for managers that
technology-sharing does not necessarily prompt the manu-
facturer to boost its investment to optimize the performance
of AI technology in the collaborative supply chain, sim-
ilar to the results of Demirezen et al. (2020) and Zhu
et al. (2007). Managers should observe that the flexibility of
technology-sharing in supply chain quality inspection enables
the stronger positive effects of AI inspection, especially when
the manufacturer’s configuration cost or technical capability
is higher. Our result suggests that when the coefficient of
configuration cost is relatively low, the manufacturer (e.g.,
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PEI ET AL. 13

Ford) with advantageous technical capabilities can strategi-
cally reduce AI inspection efforts during the sharing scenario.
By technically supporting the supplier, the manufacturer
can benefit from overall quality enhancement, reducing the
total cost.

Our findings may plausibly support Intel’s transformation
in AI inspection technology investment. As a leader in the
supply chain, Intel has strong capability in leveraging AI
technology to identify defects of wafers and packaging (Intel,
2024). In 2023, Intel collaborated with the supplier, ASRock,
to achieve complete automated PCB inspections upstream
and downstream of the supply chain (Intel, 2023). This ini-
tiative resulted in a notable 258% improvement in inspection
efficiency, with an accuracy of 97%. Although this collabora-
tion yielded promising results, Intel did not invest further in
this collaborative project.

As shown in Sections 2.1 and 2.2, the literature mainly
analyzes the impact of related factors, such as suppli-
ers’ traditional inspection accuracy on manufacturers’ AI
inspection efforts; few studies investigate the manufacturer’s
investment decisions under different AI inspection strate-
gies in the supply chain. Our study demonstrates that the
manufacturer’s lessened investment sometimes creates more
value through sharing technology with the supplier. Further-
more, our findings indicate that the manufacturer with lower
technical capability can adjust the investment to optimize
the overall quality management cost under the SA and DA
schemes.

5.4 Does AI inspection adoption always
benefit the supplier?

With AI inspection adopted upstream in the supply chain,
suppliers may benefit from the free-ride effect (Wang et al.,
2023). Moreover, McKinsey’s survey reveals that suppliers
can benefit from the technical collaboration projects initiated
by manufacturers, as the suppliers can gain cutting-edge tech-
nology access without shouldering the entire financial burden
of technology research (Gutierrez et al., 2020). However, as
AI inspection tools become more costly, suppliers may suffer
the financial burden, potentially impacting their competitive-
ness in the market (Shilov, 2021). Thus, while AI inspection
offers potential benefits, it also introduces uncertainties and
financial pressures for suppliers. Motivated by the debate on
the supplier’s status with AI inspection, we attempt to ana-
lyze the key question: Does the AI inspection adoption always
benefit the supplier?

Proposition 4.

(a) When the manufacturer adopts a sole AI inspection strat-
egy, the supplier’s cost would be higher (i.e., CSA

s > CTI
s )

than that in traditional inspection strategy if the defect
rate is relatively low (i.e., p < p1).

(b) When the manufacturer shares AI inspection technology,
if the supplier’s traditional inspection accuracy is rela-

tively high (i.e., 𝛼s > 𝛼s6), then the supplier’s cost would
be higher than that in traditional inspection strategy (i.e.,
CDA

s > CTI
s ).

When the manufacturer adopts a practical and highly cost-
effective inspection policy, the supplier can save more on
costs (Reyniers & Tapiero, 1995), so it follows that if the
manufacturer adopts AI inspection, the supplier, as a collabo-
rator in supply chain quality management, could benefit from
technology innovation. However, Proposition 4 suggests that
this is not always the case, and AI inspection adoption may
not consistently yield cost advantages for the supplier.

The explanation of Proposition 4 is as follows. In the SA
scheme, the lower product defect rate induces the manufac-

turer to set a lower AI inspection accuracy (i.e.,
dxSA

dp
> 0).

With a lower AI inspection accuracy, the decrease in defective
products may be less significant than in traditional inspec-
tion (i.e., lower Np(1 − 𝜃s𝛼s)x

SA). If the defect rate is lower
than a given threshold (i.e., p < p1), then the supplier suffers
greater losses from defects; that is, AI inspection aggravates
the supplier’s total cost. According to Proposition 2, in the
DA scheme, the higher supplier’s inspection accuracy weak-
ens the positive impact of AI inspection on reducing external
losses (i.e., lower (1 − xDA)2). If the supplier’s inspection
accuracy is higher than a given threshold (i.e., 𝛼s > 𝛼s6),
it saves less on retail returns or even incurs more external
losses. Consequently, although the DA scheme offers cost
advantages over the SA scheme, the supplier may still incur
higher total costs than under the TI scheme.

The result implies that the supplier should anticipate
potential detriments from the manufacturer-driven techni-
cal innovation, which aligns with the existing literature
(Chakraborty et al., 2019; Lee & Li, 2018; Wang et al.,
2023). The supplier may benefit from technology innova-
tion, but these advancements may also pose the challenges
of increased quality management costs, contingent upon fac-
tors such as the supplier’s traditional inspection effort and
the reduction in unit inspection costs. Our result may plau-
sibly help explain why the collaboration between HPE and
Foxconn in AI inspection ended. The DA action helps HPE
streamline inspection processes and reduce expenses but may
aggravate the financial burden of Foxcoon, thereby prompt-
ing Foxconn to embark on its own AI technology research
(Foxconn, 2021).

The findings of Proposition 4 contribute to the literature
regarding technology innovation in supply chain quality man-
agement. As summarized in Section 2.2, the literature focuses
on exploring the impact of manufacturers’ R&D innovation
on other supply chain members, ignoring the perspective of
technology innovation in quality inspection (Zhang et al.,
2022). Additionally, some studies on inspection investment
fail to consider collaborative technology adoption, where the
supplier gains access to technology through the manufac-
turer’s technology sharing (Chen et al., 2022; Zhu et al.,
2007). Therefore, to fill this gap, our research analyzes the
promoting effect of technology innovation on the supplier
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14 AI INSPECTION IN SUPPLY CHAIN

under technology sharing and nonsharing scenarios. Our
results help suppliers recognize the benefits of AI inspection,
seize opportunities for mutual success, and mitigate potential
risks associated with cost shifting.

5.5 Is AI inspection universally beneficial
for the supply chain?

The manufacturer’s technology investment has a significant
impact on suppliers, which reversely affects the total cost of
the supply chain. As leaders in the supply chain, manufac-
turers often prioritize utilizing cutting-edge technologies to
achieve next-level performance in supply-chain management
(Gutierrez et al., 2020). Consequently, some major compa-
nies, like Lenovo, have invested in AI inspection with the
ultimate goal of optimizing the supply chain cost. However,
the report of Tesla shows that AI may not eliminate supply
chain issues, adversely hindering cost optimization within the
supply chain (Büchel & Floreano, 2018). Hence, the debate
of whether AI inspection benefits the supply chain has not
yielded a clear conclusion. To address this debate, we attempt
to analyze the key question: Is AI inspection universally
beneficial for the supply chain?

Proposition 5. When the manufacturer chooses the sole
AI inspection strategy in the supply chain, the total costs for
the supply chain would be lower than that with traditional
inspection (i.e., CSA < CTI) if and only if the external failure
cost shared by the manufacturer is higher (i.e., 𝛽 > 𝛽1).

Huang et al. (2023) suggest that supply chain collabora-
tion and IT advancement positively influence supply chain
resilience, leading to cost savings within the supply chain.
Moreover, the report by McKinsey uses examples and data
to show AI improved inspection accuracy and costs, which
seems beneficial for the supply chain (Bauer et al., 2017).
Therefore, it would seem that technical innovation is an effec-
tive method to optimize the quality management cost of the
supply chain. Consistent with this intuition, in our model,
the DA scheme performs better for the supply chain than the
TI scheme (i.e., CDA < CTI). However, the result of Propo-
sition 5 contradicts this intuition. Adopting the SA scheme
does not always yield positive outcomes for the supply
chain.

The result of Proposition 5 can be explained as follows.
A higher external failure cost shared by the manufacturer

leads to greater AI inspection accuracy (i.e.,
dxSA

d𝛽
> 0). As

the accuracy of AI inspection increases, there is an increasing
marginal effect on reducing retail returns. Although the sup-
ply chain incurs a higher technology expense, reducing retail
return costs is more significant. If the manufacturer incurs
a relatively high proportion of the external failure cost (i.e.,
𝛽 > 𝛽1), it would have more willingness to achieve higher AI
inspection accuracy and avoid greater retail return costs (i.e.,
lower Np(1 − 𝜃s)(1 − xSA)(E + Lm)). In this case, the reduc-

tion in retail return costs can offset the technology expense

(i.e.,
1

2
𝜆x2), making AI inspection beneficial for the supply

chain. Conversely, if the manufacturer takes on a relatively
low proportion of the external failure cost (i.e., 𝛽 < 𝛽1), the
incentive to invest in AI inspection diminishes. Consequently,
the meager benefits from reducing retail return costs fail to
offset the technology expense, leading to a less favorable
outcome for the entire supply chain.

Policymakers should note that adopting AI inspection may
harm the supply chain if the manufacturer bears a lower pro-
portion of the external failure cost. Although AI has been
touted as a universal solution for supply chain management
issues, managers should recognize the complexities in cost
trade-offs, similar to the findings of Huang et al. (2023) and
Li & Li (2022). When manufacturers shoulder the higher
external failure cost, they can identify more defects and save
more inspection costs, creating higher value in the supply
chain. In contrast, if they bear a lower cost, the savings
from retail returns and inspection costs may not compensate
for the technology expenses. With this in mind, policymak-
ers should actively promote AI inspection adoption in the
automotive industry to alleviate the demand for costly experi-
enced inspectors, as insufficient inspections contribute to high
retail return incidents (Cavanaugh, 2023). Our findings may
help explain why the government nurtures AI inspection tech-
nology in the automotive industry, aiming to enhance product
quality (Briefs, 2023).

The result of Proposition 5 analyzes the impact of AI
inspection on the supply chain. As discussed in Section 2.2,
although the literature has extensively explored emerg-
ing technologies in supply chain management, few studies
examine the impact of adopting AI inspection on manage-
ment efficiency (Li & Li, 2022). Moreover, as shown in
Section 2.3, most studies have employed empirical meth-
ods to analyze the impact of technology innovation on
the supply chain (Mithas et al., 2022). To expand the
scope and methodology in supply chain management, our
study uses a game-theoretic approach to investigate the
consequences of AI inspection in different manufacturing
decision-making scenarios. Our findings provide valuable
insights and practical recommendations for managers and
policymakers in optimizing supply chain quality inspection
operations.

6 MODEL EXTENSIONS

In this section, we extend our base model in two different
directions. To begin with, we focus on an extended setting
where the unit inspection cost is related to the AI inspection
effort. Subsequently, we incorporate false positive inspec-
tion into the model, considering that a qualified product can
be misidentified as defective. We illustrate that our findings
from the main model are robust to these alternative model
settings.
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PEI ET AL. 15

6.1 Unit inspection cost relying on the AI
inspection effort

With AI inspection technology, firms can automatically
inspect each product with a lower unit inspection cost (Erkoc
et al., 2023). Hence, in the main model, we consider that the
unit cost of AI inspection ca is lower than that of traditional
inspection ct (i.e., ca < ct). However, according to the report
of Bauer et al. (2017), the higher inspection accuracy of AI
technology reduces the need for labor and resources during
the inspection process, resulting in more cost savings in the
unit inspection cost. In this sense, as AI technology expense
increases, the unit inspection cost presents a downward trend.
As a result, we consider that the unit inspection cost is related
to the AI inspection effort in this subsection. That is, the unit
inspection cost is defined as (1 − x)ct rather than ca, aligning
with Liu et al. (2023). We examine the robustness of Proposi-
tions 1–5 from the main model and provide the corresponding
Propositions EC.1–EC.5 in the Appendix.

Proposition EC.1, similar to Proposition 1, indicates that
even if AI inspection accuracy is higher than traditional
inspection accuracy (i.e., xSA > 𝛼m and xDA > 𝛼m), the manu-
facturer may not adopt AI inspection. Moreover, Proposition
EC.3 reveals that with the higher unit cost of traditional
inspection, the manufacturer invests less in the DA scheme
than in SA, because higher traditional inspection costs lead
to larger marginal reductions in inspection costs and external
losses under DA. In this scenario, the manufacturer must con-
sider the trade-offs between cost reduction and configuration
cost and should thus invest less. The results of Propositions
EC.2-EC.5 are qualitatively the same as the results of Propo-
sitions 2–5. For example, Proposition EC.2 shows that even
if the revenue from technology-sharing is lower than the con-
figuration cost (i.e., F < kxDA), the manufacturer and supplier
would still prefer dual AI inspection when the supplier’s tra-
ditional inspection accuracy is lower than the given threshold
(i.e., 𝛼 < 𝛼S4).

6.2 False-positive inspection

Aligned with existing literature (Sabouri et al., 2015), we
assume that AI inspection technology identifies each quali-
fied product with minimal error, thus excluding false positives
from our main analysis. This premise holds substantial valid-
ity across various sectors; however, the automotive industry
presents a notable exception. Here, AI-driven inspections
may incur false positives, leading to the unnecessary rejec-
tion of acceptable products and escalating waste and costs
(LandingAI, 2020). Consequently, this subsection introduces
a nuanced consideration of false positives, which creates
a gap between the effort put into AI inspection and the
actual accuracy achieved. Specifically, with a false-positive
probability denoted as b, the manufacturer’s investment in
AI inspection effort, x, yields an actual inspection accu-

racy, a, where x = a + Δ𝛼 and Δ𝛼 =
1−p

p
b. Here, Δ𝛼

represents the bias introduced by the probability of false pos-

itives. We examine the robustness of Propositions 1–5 from
the main model and provide Propositions EC.6–EC.10 in
the Appendix.

The results of Propositions EC.6–EC.10 are qualitatively
the same as the results of Propositions 1–5. For example,
Proposition EC.6 shows that manufacturers may hesitate to
adopt AI inspection, despite its superior accuracy over tra-
ditional methods (i.e., xSA > 𝛼m and xDA > 𝛼m) when the
supplier’s traditional inspection accuracy falls within a cer-
tain intermediate range (i.e., max{𝛼s21, 𝛼s23} < 𝛼s < 𝛼s22).
Furthermore, Proposition EC.8 demonstrates that with low
false positive rates (i.e., b < b1), manufacturers might pre-
fer lower investments in the DA scheme compared to SA.
This preference stems from the DA scheme’s enhanced actual
accuracy due to lower false positive rates, thereby reduc-
ing the influx of defective products into the manufacturer’s
inspection process and enabling cost reductions. Addition-
ally, Proposition EC.9 indicates that adopting AI inspection,
even when it yields higher accuracy than traditional methods
(i.e., xSA − Δ𝛼 > 𝜃m𝛼m), can adversely affect the supplier.
This adverse effect is attributed to the supplier incurring
higher retail return costs due to false positive inspections via
AI technology, which might exceed the benefits of reduced
retail returns.

7 CONCLUSION

Emerging AI technology provides firms with a new tool for
supply chain quality management. Manufacturers can uti-
lize AI inspection in their quality inspection process as a
substitute for traditional inspection (e.g., Toyota), and share
AI technology with suppliers to further improve quality
management (e.g., HPE). Based on these practical exam-
ples, our study analyzes a manufacturer’s strategy to adopt
AI inspection technology and the choice of whether to
share technology with the supplier. This study is among
the first to focus on a manufacturer’s decision for the AI-
driven inspection modes in a two-stage inspection process,
helping firms and policymakers take advantage of AI’s
formidable capabilities.

7.1 Managerial and policy implications

Our work provides implications for firms and policymak-
ers aiming to manage quality collaboratively. According to
Proposition 1, if the upstream supplier’s traditional inspec-
tion accuracy is either very high or very low, the downstream
manufacturer can benefit from adopting AI inspection. We
demonstrate that the supplier’s relatively high traditional
inspection accuracy induces the manufacturer to adopt AI
inspection, leading to an internal transformation of quality
management costs between the manufacturer and supplier. In
contrast, the supplier’s relatively low traditional inspection
accuracy incentivizes the manufacturer to adopt AI inspec-
tion to alleviate the burden of retail returns. For companies

 15405915, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/deci.70003 by Jun Pei - H

efei U
niversity O

f T
echnology , W

iley O
nline L

ibrary on [07/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 AI INSPECTION IN SUPPLY CHAIN

like General Motors, where the supplier’s inspection accu-
racy does not fall into these extremes, our study suggests that
adopting AI inspection may not be necessary.

We then explore the optimal collaboration strategy in sup-
ply chain quality management. Proposition 2 establishes that
when the supplier’s traditional inspection accuracy is lower
than a given threshold, it is optimal for the manufacturer
to share AI inspection technology with the supplier. The
reason is that under a technology-sharing strategy, the man-
ufacturer can improve the supplier’s inspection capability
to decrease retail returns, irrespective of whether the tech-
nology revenue is higher than the configuration cost. This
result suggests that manufacturers like Apple should share AI
inspections with suppliers like Foxconn when their suppli-
ers’ traditional inspection accuracy is relatively low. We also
compare the manufacturer’s technology investments under
different collaboration strategies. Proposition 3 demonstrates
that when choosing a technology-sharing strategy, the manu-
facturer may invest less than that without sharing technology,
similar to the finding of Zhu et al. (2007).

Proposition 4 implies a key managerial insight that the
supplier may be hurt when the manufacturer adopts AI
inspection. Our result shows that when the manufacturer
adopts sole AI inspection, the supplier can free-ride on the
cost optimization if and only if the defect rate is relatively
high. Our result also highlights that technology-sharing may
harm the supplier when the supplier’s traditional inspection
accuracy is relatively high. Hence, we suggest that the sup-
plier (e.g., Foxconn) should take action in response to the
manufacturer’s technology-sharing when AI cannot decrease
the inspection cost.

Our findings also shed light on how the government could
regulate AI inspection adoption. Proposition 5 illustrates how
greater AI inspection may harm the supply chain under the
SA strategy. In addition, when the manufacturer and sup-
plier adopt AI inspection, the higher unit external failure
cost may also harm the supply chain. Hence, we suggest
that the government encourage automobile manufacturers to
adopt AI inspection, and then go further by issuing regula-
tions to prevent AI inspection from increasing the cost burden
in light industries.

7.2 Theoretical implication and future
research directions

This work contributes to three primary research streams:
inspection strategy, supply chain quality management, and
new technology in quality management, providing new direc-
tions for the literature on inspection strategy. The literature
often explores the impact of a firm’s strategy on product
quality or pricing decisions (Erkoc et al., 2023; Lee & Li,
2018), whereas we concentrate on the manufacturer’s opti-
mal inspection strategies and extend the research on supply
chain quality management. While recent studies predomi-
nantly examine the roles of the supplier and manufacturer

in the supply chain (Shen & Sun, 2023), we investigate
how the collaboration between the supplier and manufacturer
affects the manufacturer’s decision on sharing AI inspection
technology. This study also complements the research on
new technology in quality management. Most papers have
explored the impacts of new technology on various busi-
nesses from technology or empirical perspectives (Choi et al.,
2022; Olsen & Tomlin, 2020; Tan, 2024), whereas we inves-
tigate the adoption of AI technology in quality management
based on a game-theoretic model.

Our study has some limitations that create promis-
ing opportunities for future research. Firstly, although it
is reasonable to assume that the manufacturer incurs a
configuration cost to embed AI technology into the sup-
plier’s inspection process, our study does not account for
the potential costs, such as technical consultation and
maintenance fees. These cost factors could diminish the
manufacturer’s initiative to share technology. Secondly,
by assuming a subordinate role for the supplier in the
technology-sharing scenario, our analysis overlooks informa-
tion asymmetry, where the supplier may not fully understand
the utility of AI technology. Future research could inves-
tigate how the supplier navigates such uncertainty when
making decisions on accessing the technology. Finally,
it would be meaningful to explore the inspection strat-
egy by incorporating multiple suppliers in the model, as
their competition may impact technology innovation within
the supply chain. We expect that the effects of competi-
tion could be amplified by the manufacturer’s technology
investment.

In summary, our work considers the interaction between
the supplier and manufacturer in the inspection process and
the effects of AI inspection, offering important implications
for scholars, industry managers, and decision-makers and
providing a novel perspective on quality management oper-
ations. By considering the operational characteristics of AI
inspection and the collaboration between the supplier and
the manufacturer, our work establishes a new model frame-
work that incorporates the manufacturer’s adoption of AI
inspection and transformation of inspection modes. Our work
provides a new perspective to research on quality inspec-
tion and supply chain management. Our results show that the
manufacturer’s decisions on the investment in AI inspection
technology and subsequent operational strategy are critical in
the supply chain. These results broaden the knowledge and
theory for firms to promote AI inspection.
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